28,558 research outputs found

    Similarity of trajectories taking into account geographic context

    Get PDF
    The movements of animals, people, and vehicles are embedded in a geographic context. This context influences the movement and may cause the formation of certain behavioral responses. Thus, it is essential to include context parameters in the study of movement and the development of movement pattern analytics. Advances in sensor technologies and positioning devices provide valuable data not only of moving agents but also of the circumstances embedding the movement in space and time. Developing knowledge discovery methods to investigate the relation between movement and its surrounding context is a major challenge in movement analysis today. In this paper we show how to integrate geographic context into the similarity analysis of movement data. For this, we discuss models for geographic context of movement data. Based on this we develop simple but efficient context-aware similarity measures for movement trajectories, which combine a spatial and a contextual distance. These are based on well-known similarity measures for trajectories, such as the Hausdorff, Fréchet, or equal time distance. We validate our approach by applying these measures to movement data of hurricanes and albatross

    Exploring scholarly data with Rexplore.

    Get PDF
    Despite the large number and variety of tools and services available today for exploring scholarly data, current support is still very limited in the context of sensemaking tasks, which go beyond standard search and ranking of authors and publications, and focus instead on i) understanding the dynamics of research areas, ii) relating authors ‘semantically’ (e.g., in terms of common interests or shared academic trajectories), or iii) performing fine-grained academic expert search along multiple dimensions. To address this gap we have developed a novel tool, Rexplore, which integrates statistical analysis, semantic technologies, and visual analytics to provide effective support for exploring and making sense of scholarly data. Here, we describe the main innovative elements of the tool and we present the results from a task-centric empirical evaluation, which shows that Rexplore is highly effective at providing support for the aforementioned sensemaking tasks. In addition, these results are robust both with respect to the background of the users (i.e., expert analysts vs. ‘ordinary’ users) and also with respect to whether the tasks are selected by the evaluators or proposed by the users themselves

    CT-Mapper: Mapping Sparse Multimodal Cellular Trajectories using a Multilayer Transportation Network

    Get PDF
    Mobile phone data have recently become an attractive source of information about mobility behavior. Since cell phone data can be captured in a passive way for a large user population, they can be harnessed to collect well-sampled mobility information. In this paper, we propose CT-Mapper, an unsupervised algorithm that enables the mapping of mobile phone traces over a multimodal transport network. One of the main strengths of CT-Mapper is its capability to map noisy sparse cellular multimodal trajectories over a multilayer transportation network where the layers have different physical properties and not only to map trajectories associated with a single layer. Such a network is modeled by a large multilayer graph in which the nodes correspond to metro/train stations or road intersections and edges correspond to connections between them. The mapping problem is modeled by an unsupervised HMM where the observations correspond to sparse user mobile trajectories and the hidden states to the multilayer graph nodes. The HMM is unsupervised as the transition and emission probabilities are inferred using respectively the physical transportation properties and the information on the spatial coverage of antenna base stations. To evaluate CT-Mapper we collected cellular traces with their corresponding GPS trajectories for a group of volunteer users in Paris and vicinity (France). We show that CT-Mapper is able to accurately retrieve the real cell phone user paths despite the sparsity of the observed trace trajectories. Furthermore our transition probability model is up to 20% more accurate than other naive models.Comment: Under revision in Computer Communication Journa
    • 

    corecore