5,632 research outputs found

    Exploring Communities in Large Profiled Graphs

    Full text link
    Given a graph GG and a vertex q∈Gq\in G, the community search (CS) problem aims to efficiently find a subgraph of GG whose vertices are closely related to qq. Communities are prevalent in social and biological networks, and can be used in product advertisement and social event recommendation. In this paper, we study profiled community search (PCS), where CS is performed on a profiled graph. This is a graph in which each vertex has labels arranged in a hierarchical manner. Extensive experiments show that PCS can identify communities with themes that are common to their vertices, and is more effective than existing CS approaches. As a naive solution for PCS is highly expensive, we have also developed a tree index, which facilitate efficient and online solutions for PCS

    Reasoning & Querying – State of the Art

    Get PDF
    Various query languages for Web and Semantic Web data, both for practical use and as an area of research in the scientific community, have emerged in recent years. At the same time, the broad adoption of the internet where keyword search is used in many applications, e.g. search engines, has familiarized casual users with using keyword queries to retrieve information on the internet. Unlike this easy-to-use querying, traditional query languages require knowledge of the language itself as well as of the data to be queried. Keyword-based query languages for XML and RDF bridge the gap between the two, aiming at enabling simple querying of semi-structured data, which is relevant e.g. in the context of the emerging Semantic Web. This article presents an overview of the field of keyword querying for XML and RDF

    Maximal clades in random binary search trees

    Full text link
    We study maximal clades in random phylogenetic trees with the Yule-Harding model or, equivalently, in binary search trees. We use probabilistic methods to reprove and extend earlier results on moment asymptotics and asymptotic normality. In particular, we give an explanation of the curious phenomenon observed by Drmota, Fuchs and Lee (2014) that asymptotic normality holds, but one should normalize using half the variance.Comment: 25 page

    Dynamic Complexity Meets Parameterised Algorithms

    Get PDF
    Dynamic Complexity studies the maintainability of queries with logical formulas in a setting where the underlying structure or database changes over time. Most often, these formulas are from first-order logic, giving rise to the dynamic complexity class DynFO. This paper investigates extensions of DynFO in the spirit of parameterised algorithms. In this setting structures come with a parameter k and the extensions allow additional "space" of size f(k) (in the form of an additional structure of this size) or additional time f(k) (in the form of iterations of formulas) or both. The resulting classes are compared with their non-dynamic counterparts and other classes. The main part of the paper explores the applicability of methods for parameterised algorithms to this setting through case studies for various well-known parameterised problems

    Squarepants in a Tree: Sum of Subtree Clustering and Hyperbolic Pants Decomposition

    Full text link
    We provide efficient constant factor approximation algorithms for the problems of finding a hierarchical clustering of a point set in any metric space, minimizing the sum of minimimum spanning tree lengths within each cluster, and in the hyperbolic or Euclidean planes, minimizing the sum of cluster perimeters. Our algorithms for the hyperbolic and Euclidean planes can also be used to provide a pants decomposition, that is, a set of disjoint simple closed curves partitioning the plane minus the input points into subsets with exactly three boundary components, with approximately minimum total length. In the Euclidean case, these curves are squares; in the hyperbolic case, they combine our Euclidean square pants decomposition with our tree clustering method for general metric spaces.Comment: 22 pages, 14 figures. This version replaces the proof of what is now Lemma 5.2, as the previous proof was erroneou
    • …
    corecore