136 research outputs found

    Coarse wavelength division multiplexer on silicon-on-insulator for 100 GbE

    Get PDF
    A four-channel cascaded MZl based de-multiplexer at O-band with coarse channel spacing of 20 nm and band flatness of 13 nm is demonstrated on silicon-on-insulator. The device shows a mean crosstalk and insertion loss below -16 dB and 2.5 dB

    Dual phase-shift Bragg grating silicon photonic modulator operating up to 60 Gb/s

    Get PDF
    We demonstrate PAM-4 and OOK operation of a novel silicon photonic modulator. The modulator design is based on two phase-shifts in a Bragg Grating structure driven in a push pull configuration. Back-to-back PAM-4 modulation is demonstrated below the FEC threshold at up to 60 Gb/s. OOK modulation is also shown up to 55 Gb/s with MMSE equalization and up to 50 Gb/s without equalization. Eye diagrams and BER curves at different bit rates are provided for both PAM-4 and OOK modulations. To our knowledge, this structure is the fastest silicon photonic modulator based on Bragg gratings, reaching modulation speed comparable to the fastest Mach-Zehnder modulators and micro-ring modulators

    CMOS compatible all-silicon TM pass polarizer based on highly doped silicon waveguide

    Get PDF
    We propose and analyze via simulation a novel approach to implement a complementary metal-oxide-semiconductor compatible and high extinction ratio transverse magnetic pass polarizer on the silicon-on-insulator platform with a 340 nm thick silicon core. The TM-pass polarizer utilizes a highly doped p-silicon waveguide as the transverse hybrid plasmonic waveguide. We observed an extinction ratio of 30.11 dB and an insertion loss of 3.08 dB for a device length of 15 µm. The fabrication process of the proposed TM-pass polarizer is simpler compared to the state-of-the-art since it only uses silicon waveguides and does not require any special material or feature size

    Open-access silicon photonics: current status and emerging initiatives

    Get PDF
    Silicon photonics is widely acknowledged as a game-changing technology driven by the needs of datacom and telecom. Silicon photonics builds on highly capital-intensive manufacturing infrastructure, and mature open-access silicon photonics platforms are translating the technology from research fabs to industrial manufacturing levels. To meet the current market demands for silicon photonics manufacturing, a variety of open-access platforms is offered by CMOS pilot lines, R&D institutes, and commercial foundries. This paper presents an overview of existing and upcoming commercial and noncommercial open-access silicon photonics technology platforms. We also discuss the diversity in these open-access platforms and their key differentiators

    Photonic Integrated Circuit (PIC) Device Structures: Background, Fabrication Ecosystem, Relevance to Space Systems Applications, and Discussion of Related Radiation Effects

    Get PDF
    Electronic integrated circuits are considered one of the most significant technological advances of the 20th century, with demonstrated impact in their ability to incorporate successively higher numbers transistors and construct electronic devices onto a single CMOS chip. Photonic integrated circuits (PICs) exist as the optical analog to integrated circuits; however, in place of transistors, PICs consist of numerous scaled optical components, including such "building-block" structures as waveguides, MMIs, lasers, and optical ring resonators. The ability to construct electronic and photonic components on a single microsystems platform offers transformative potential for the development of technologies in fields including communications, biomedical device development, autonomous navigation, and chemical and atmospheric sensing. Developing on-chip systems that provide new avenues for integration and replacement of bulk optical and electro-optic components also reduces size, weight, power and cost (SWaP-C) limitations, which are important in the selection of instrumentation for specific flight projects. The number of applications currently emerging for complex photonics systems-particularly in data communications-warrants additional investigations when considering reliability for space systems development. This Body of Knowledge document seeks to provide an overview of existing integrated photonics architectures; the current state of design, development, and fabrication ecosystems in the United States and Europe; and potential space applications, with emphasis given to associated radiation effects and reliability
    • …
    corecore