6 research outputs found

    Hierarchical dynamic causal modeling of resting-state fMRI reveals longitudinal changes in effective connectivity in the motor system after thalamotomy for essential tremor

    Get PDF
    Thalamotomy at the ventralis intermedius nucleus for essential tremor is known to cause changes in motor circuitry, but how a focal lesion leads to progressive changes in connectivity is not clear. To understand the mechanisms by which thalamotomy exerts enduring effects on motor circuitry, a quantitative analysis of directed or effective connectivity among motor-related areas is required. We characterized changes in effective connectivity of the motor system following thalamotomy using (spectral) dynamic causal modeling (spDCM) for resting-state fMRI. To differentiate long-lasting treatment effects from transient effects, and to identify symptom-related changes in effective connectivity, we subject longitudinal resting-state fMRI data to spDCM, acquired 1 day prior to, and 1 day, 7 days, and 3 months after thalamotomy using a non-cranium-opening MRI-guided focused ultrasound ablation technique. For the group-level (between subject) analysis of longitudinal (between-session) effects, we introduce a multilevel parametric empirical Bayes (PEB) analysis for spDCM. We found remarkably selective and consistent changes in effective connectivity from the ventrolateral nuclei and the supplementary motor area to the contralateral dentate nucleus after thalamotomy, which may be mediated via a polysynaptic thalamic-cortical-cerebellar motor loop. Crucially, changes in effective connectivity predicted changes in clinical motor-symptom scores after thalamotomy. This study speaks to the efficacy of thalamotomy in regulating the dentate nucleus in the context of treating essential tremor. Furthermore, it illustrates the utility of PEB for group-level analysis of dynamic causal modeling in quantifying longitudinal changes in effective connectivity; i.e., measuring long-term plasticity in human subjects non-invasively

    Functional localization and effective connectivity of cortical theta and alpha oscillatory activity during an attention task

    Get PDF
    Objectives: The aim of this paper is to investigate cortical electric neuronal activity as an indicator of brain function, in a mental arithmetic task that requires sustained attention, as compared to the resting state condition. The two questions of interest are the cortical localization of different oscillatory activities, and the directional effective flow of oscillatory activity between regions of interest, in the task condition compared to resting state. In particular, theta and alpha activity are of interest here, due to their important role in attention processing. Methods: We adapted mental arithmetic as an attention ask in this study. Eyes closed 61-channel EEG was recorded in 14 participants during resting and in a mental arithmetic task (“serial sevens subtraction”). Functional localization and connectivity analyses were based on cortical signals of electric neuronal activity estimated with sLORETA (standardized low resolution electromagnetic tomography). Functional localization was based on the comparison of the cortical distributions of the generators of oscillatory activity between task and resting conditions. Assessment of effective connectivity was based on the iCoh (isolated effective coherence) method, which provides an appropriate frequency decomposition of the directional flow of oscillatory activity between brain regions. Nine regions of interest comprising nodes from the dorsal and ventral attention networks were selected for the connectivity analysis. Results: Cortical spectral density distribution comparing task minus rest showed significant activity increase in medial prefrontal areas and decreased activity in left parietal lobe for the theta band, and decreased activity in parietal-occipital regions for the alpha1 band. At a global level, connections among right hemispheric nodes were predominantly decreased during the task condition, while connections among left hemispheric nodes were predominantly increased. At more detailed level, decreased flow from right inferior frontal gyrus to anterior cingulate cortex for theta, and low and high alpha oscillations, and increased feedback (bidirectional flow) between left superior temporal gyrus and left inferior frontal gyrus, were observed during the arithmetic task. Conclusions: Task related medial prefrontal increase in theta oscillations possibly corresponds to frontal midline theta, while parietal decreased alpha1 activity indicates the active role of this region in the numerical task. Task related decrease of intracortical right hemispheric connectivity support the notion that these nodes need to disengage from one another in order to not interfere with the ongoing numerical processing. The bidirectional feedback between left frontal-temporal-parietal regions in the arithmetic task is very likely to be related to attention network working memory function. Significance: The methods of analysis and the results presented here will hopefully contribute to clarify the roles of the different EEG oscillations during sustained attention, both in terms of their functional localization and in terms of how they integrate brain function by supporting information flow between different cortical regions. The methodology presented here might be clinically relevant in evaluating abnormal attention function

    Hierarchical Dynamic Causal Modeling of Resting-State fMRI Reveals Longitudinal Changes in Effective Connectivity in the Motor System after Thalamotomy for Essential Tremor

    Get PDF
    Thalamotomy at the ventralis intermedius nucleus for essential tremor is known to cause changes in motor circuitry, but how a focal lesion leads to progressive changes in connectivity is not clear. To understand the mechanisms by which thalamotomy exerts enduring effects on motor circuitry, a quantitative analysis of directed or effective connectivity among motor-related areas is required. We characterized changes in effective connectivity of the motor system following thalamotomy using (spectral) dynamic causal modeling (spDCM) for resting-state fMRI. To differentiate long-lasting treatment effects from transient effects, and to identify symptom-related changes in effective connectivity, we subject longitudinal resting-state fMRI data to spDCM, acquired 1 day prior to, and 1 day, 7 days, and 3 months after thalamotomy using a non-cranium-opening MRI-guided focused ultrasound ablation technique. For the group-level (between subject) analysis of longitudinal (between-session) effects, we introduce a multilevel parametric empirical Bayes (PEB) analysis for spDCM. We found remarkably selective and consistent changes in effective connectivity from the ventrolateral nuclei and the supplementary motor area to the contralateral dentate nucleus after thalamotomy, which may be mediated via a polysynaptic thalamic-cortical-cerebellar motor loop. Crucially, changes in effective connectivity predicted changes in clinical motor-symptom scores after thalamotomy. This study speaks to the efficacy of thalamotomy in regulating the dentate nucleus in the context of treating essential tremor. Furthermore, it illustrates the utility of PEB for group-level analysis of dynamic causal modeling in quantifying longitudinal changes in effective connectivity; i.e., measuring long-term plasticity in human subjects non-invasively.ope

    Hierarchical Dynamic Causal Modeling of Resting-State fMRI Reveals Longitudinal Changes in Effective Connectivity in the Motor System after Thalamotomy for Essential Tremor

    Get PDF
    Thalamotomy at the ventralis intermedius nucleus for essential tremor is known to cause changes in motor circuitry, but how a focal lesion leads to progressive changes in connectivity is not clear. To understand the mechanisms by which thalamotomy exerts enduring effects on motor circuitry, a quantitative analysis of directed or effective connectivity among motor-related areas is required. We characterized changes in effective connectivity of the motor system following thalamotomy using (spectral) dynamic causal modeling (spDCM) for resting-state fMRI. To differentiate long-lasting treatment effects from transient effects, and to identify symptom-related changes in effective connectivity, we subject longitudinal resting-state fMRI data to spDCM, acquired 1 day prior to, and 1 day, 7 days, and 3 months after thalamotomy using a non-cranium-opening MRI-guided focused ultrasound ablation technique. For the group-level (between subject) analysis of longitudinal (between-session) effects, we introduce a multilevel parametric empirical Bayes (PEB) analysis for spDCM. We found remarkably selective and consistent changes in effective connectivity from the ventrolateral nuclei and the supplementary motor area to the contralateral dentate nucleus after thalamotomy, which may be mediated via a polysynaptic thalamic–cortical–cerebellar motor loop. Crucially, changes in effective connectivity predicted changes in clinical motor-symptom scores after thalamotomy. This study speaks to the efficacy of thalamotomy in regulating the dentate nucleus in the context of treating essential tremor. Furthermore, it illustrates the utility of PEB for group-level analysis of dynamic causal modeling in quantifying longitudinal changes in effective connectivity; i.e., measuring long-term plasticity in human subjects non-invasively

    Motor network dynamic resting state fMRI connectivity of neurotypical children in regions affected by cerebral palsy

    Get PDF
    BackgroundNormative childhood motor network resting-state fMRI effective connectivity is undefined, yet necessary for translatable dynamic resting-state-network-informed evaluation in pediatric cerebral palsy.MethodsCross-spectral dynamic causal modeling of resting-state-fMRI was investigated in 50 neurotypically developing 5- to 13-year-old children. Fully connected six-node network models per hemisphere included primary motor cortex, striatum, subthalamic nucleus, globus pallidus internus, thalamus, and contralateral cerebellum. Parametric Empirical Bayes with exhaustive Bayesian model reduction and Bayesian modeling averaging informed the model; Purdue Pegboard Test scores of hand motor behavior were the covariate at the group level to determine the effective-connectivity-functional behavior relationship.ResultsAlthough both hemispheres exhibited similar effective connectivity of motor cortico-basal ganglia-cerebellar networks, magnitudes were slightly greater on the right, except for left-sided connections of the striatum which were more numerous and of opposite polarity. Inter-nodal motor network effective connectivity remained consistent and robust across subjects. Age had a greater impact on connections to the contralateral cerebellum, bilaterally. Motor behavior, however, affected different connections in each hemisphere, exerting a more prominent effect on the left modulatory connections to the subthalamic nucleus, contralateral cerebellum, primary motor cortex, and thalamus.DiscussionThis study revealed a consistent pattern of directed resting-state effective connectivity in healthy children aged 5–13 years within the motor network, encompassing cortical, subcortical, and cerebellar regions, correlated with motor skill proficiency. Both hemispheres exhibited similar effective connectivity within motor cortico-basal ganglia-cerebellar networks reflecting inter-nodal signal direction predicted by other modalities, mainly differing from task-dependent studies due to network differences at rest. Notably, age-related changes were more pronounced in connections to the contralateral cerebellum. Conversely, motor behavior distinctly impacted connections in each hemisphere, emphasizing its role in modulating left sided connections to the subthalamic nucleus, contralateral cerebellum, primary motor cortex, and thalamus. Motor network effective connectivity was correlated with motor behavior, validating its physiological significance. This study is the first to evaluate a normative effective connectivity model for the pediatric motor network using resting-state functional MRI correlating with behavior and serves as a foundation for identifying abnormal findings and optimizing targeted interventions like deep brain stimulation, potentially influencing future therapeutic approaches for children with movement disorders

    Towards a better understanding of the impact of heart rate on the BOLD signal: a new method for physiological noise correction and its applications

    Get PDF
    Functional magnetic resonance imaging (fMRI) based on blood oxygenation level-dependent (BOLD) contrast allows non-invasive examination of brain activity and is widely used in the neuroimaging field. The BOLD contrast mechanism reflects hemodynamic changes resulting from a complex interplay of blood flow, blood volume, and oxygen consumption. Heart rate (HR) variations are the most intriguing and less understood physiological processes affecting the BOLD signal, as they are the result of a wide variety of interacting factors. The use of the response function that best models HR-induced signal changes, called cardiac response function (CRF), is an effective method to reduce HR noise in fMRI. However, current models of physiological noise correction based on CRF, i.e. canonical and individual, either do not take into account variations in HR between subjects, and are thus inadequate for cohorts with varying HR, or require time-consuming quality control of individual physiological recordings and derived CRFs. By analyzing a large cohort of healthy individuals, the results presented in this thesis show that different HRs influence the BOLD signal and their corresponding spectra differently. A further finding is that HR plays an essential role in determining the shape of the CRF. Slower HRs produce a smoothed CRF with a single well-defined maximum, while faster HRs cause a second maximum. Taking advantage of this dependence of the CRF on HR, a novel method is proposed to model HR-induced fluctuations in the BOLD signal more accurately than current approaches of physiological noise correction. This method, called HR-based CRF, consists of two CRFs: one for HRs below 68 bpm and one for HRs above this value. HR-based CRFs can be directly applied to the fMRI data without the time-consuming task of deriving a CRF for each subject while accounting for inter-subject variability in HR response
    corecore