6,584 research outputs found

    Signed double Roman domination on cubic graphs

    Full text link
    The signed double Roman domination problem is a combinatorial optimization problem on a graph asking to assign a label from {±1,2,3}\{\pm{}1,2,3\} to each vertex feasibly, such that the total sum of assigned labels is minimized. Here feasibility is given whenever (i) vertices labeled ±1\pm{}1 have at least one neighbor with label in {2,3}\{2,3\}; (ii) each vertex labeled −1-1 has one 33-labeled neighbor or at least two 22-labeled neighbors; and (iii) the sum of labels over the closed neighborhood of any vertex is positive. The cumulative weight of an optimal labeling is called signed double Roman domination number (SDRDN). In this work, we first consider the problem on general cubic graphs of order nn for which we present a sharp n/2+Θ(1)n/2+\Theta(1) lower bound for the SDRDN by means of the discharging method. Moreover, we derive a new best upper bound. Observing that we are often able to minimize the SDRDN over the class of cubic graphs of a fixed order, we then study in this context generalized Petersen graphs for independent interest, for which we propose a constraint programming guided proof. We then use these insights to determine the SDRDNs of subcubic 2×m2\times m grid graphs, among other results

    Signed total double Roman dominatıon numbers in digraphs

    Get PDF
    Let D = (V, A) be a finite simple digraph. A signed total double Roman dominating function (STDRD-function) on the digraph D is a function f : V (D) → {−1, 1, 2, 3} satisfying the following conditions: (i) P x∈N−(v) f(x) ≥ 1 for each v ∈ V (D), where N−(v) consist of all in-neighbors of v, and (ii) if f(v) = −1, then the vertex v must have at least two in-neighbors assigned 2 under f or one in-neighbor assigned 3 under f, while if f(v) = 1, then the vertex v must have at least one in-neighbor assigned 2 or 3 under f. The weight of a STDRD-function f is the value P x∈V (D) f(x). The signed total double Roman domination number (STDRD-number) γtsdR(D) of a digraph D is the minimum weight of a STDRD-function on D. In this paper we study the STDRD-number of digraphs, and we present lower and upper bounds for γtsdR(D) in terms of the order, maximum degree and chromatic number of a digraph. In addition, we determine the STDRD-number of some classes of digraphs.Publisher's Versio

    International Conference on Discrete Mathematics (ICDM-2019)

    Get PDF
    • …
    corecore