1,176 research outputs found

    Signed Tropical Convexity

    Get PDF
    We establish a new notion of tropical convexity for signed tropical numbers. We provide several equivalent descriptions involving balance relations and intersections of open halfspaces as well as the image of a union of polytopes over Puiseux series and hyperoperations. Along the way, we deduce a new Farkas\u27 lemma and Fourier-Motzkin elimination without the non-negativity restriction on the variables. This leads to a Minkowski-Weyl theorem for polytopes over the signed tropical numbers

    Signed tropical convexity

    Get PDF
    We establish a new notion of tropical convexity for signed tropical numbers. We provide several equivalent descriptions involving balance relations and intersections of open halfspaces as well as the image of a union of polytopes over Puiseux series and hyperoperations. Along the way, we deduce a new Farkas’ lemma and Fourier-Motzkin elimination without the non-negativity restriction on the variables. This leads to a Minkowski-Weyl theorem for polytopes over the signed tropical numbers

    Signed tropical halfspaces and convexity

    Full text link
    We extend the fundamentals for tropical convexity beyond the tropically positive orthant expanding the theory developed by Loho and V\'egh (ITCS 2020). We study two notions of convexity for signed tropical numbers called 'TO-convexity' (formerly 'signed tropical convexity') and the novel notion 'TC-convexity'. We derive several separation results for TO-convexity and TC-convexity. A key ingredient is a thorough understanding of TC-hemispaces - those TC-convex sets whose complement is also TC-convex. Furthermore, we use new insights in the interplay between convexity over Puiseux series and its signed valuation. Remarkably, TC-convexity can be seen as a natural convexity notion for representing oriented matroids as it arises from a generalization of the composition operation of vectors in an oriented matroid. We make this explicit by giving representations of linear spaces over the real tropical hyperfield in terms of TC-convexity.Comment: v1: 48 pages, 8 figures; v2: 58 pages, 10 figures, new section on oriented matroids + minor improvement

    Computing the vertices of tropical polyhedra using directed hypergraphs

    Get PDF
    We establish a characterization of the vertices of a tropical polyhedron defined as the intersection of finitely many half-spaces. We show that a point is a vertex if, and only if, a directed hypergraph, constructed from the subdifferentials of the active constraints at this point, admits a unique strongly connected component that is maximal with respect to the reachability relation (all the other strongly connected components have access to it). This property can be checked in almost linear-time. This allows us to develop a tropical analogue of the classical double description method, which computes a minimal internal representation (in terms of vertices) of a polyhedron defined externally (by half-spaces or hyperplanes). We provide theoretical worst case complexity bounds and report extensive experimental tests performed using the library TPLib, showing that this method outperforms the other existing approaches.Comment: 29 pages (A4), 10 figures, 1 table; v2: Improved algorithm in section 5 (using directed hypergraphs), detailed appendix; v3: major revision of the article (adding tropical hyperplanes, alternative method by arrangements, etc); v4: minor revisio

    The tropical double description method

    Get PDF
    We develop a tropical analogue of the classical double description method allowing one to compute an internal representation (in terms of vertices) of a polyhedron defined externally (by inequalities). The heart of the tropical algorithm is a characterization of the extreme points of a polyhedron in terms of a system of constraints which define it. We show that checking the extremality of a point reduces to checking whether there is only one minimal strongly connected component in an hypergraph. The latter problem can be solved in almost linear time, which allows us to eliminate quickly redundant generators. We report extensive tests (including benchmarks from an application to static analysis) showing that the method outperforms experimentally the previous ones by orders of magnitude. The present tools also lead to worst case bounds which improve the ones provided by previous methods.Comment: 12 pages, prepared for the Proceedings of the Symposium on Theoretical Aspects of Computer Science, 2010, Nancy, Franc

    Tropical polar cones, hypergraph transversals, and mean payoff games

    Get PDF
    We discuss the tropical analogues of several basic questions of convex duality. In particular, the polar of a tropical polyhedral cone represents the set of linear inequalities that its elements satisfy. We characterize the extreme rays of the polar in terms of certain minimal set covers which may be thought of as weighted generalizations of minimal transversals in hypergraphs. We also give a tropical analogue of Farkas lemma, which allows one to check whether a linear inequality is implied by a finite family of linear inequalities. Here, the certificate is a strategy of a mean payoff game. We discuss examples, showing that the number of extreme rays of the polar of the tropical cyclic polyhedral cone is polynomially bounded, and that there is no unique minimal system of inequalities defining a given tropical polyhedral cone.Comment: 27 pages, 6 figures, revised versio

    Tropical polyhedra are equivalent to mean payoff games

    Full text link
    We show that several decision problems originating from max-plus or tropical convexity are equivalent to zero-sum two player game problems. In particular, we set up an equivalence between the external representation of tropical convex sets and zero-sum stochastic games, in which tropical polyhedra correspond to deterministic games with finite action spaces. Then, we show that the winning initial positions can be determined from the associated tropical polyhedron. We obtain as a corollary a game theoretical proof of the fact that the tropical rank of a matrix, defined as the maximal size of a submatrix for which the optimal assignment problem has a unique solution, coincides with the maximal number of rows (or columns) of the matrix which are linearly independent in the tropical sense. Our proofs rely on techniques from non-linear Perron-Frobenius theory.Comment: 28 pages, 5 figures; v2: updated references, added background materials and illustrations; v3: minor improvements, references update
    corecore