808 research outputs found

    Signaling For Multimedia Conferencing in Stand-Alone Mobile Ad Hoc Networks

    Get PDF
    Mobile ad hoc networks (MANETs) are infrastructure-less and can be set up anywhere, anytime. They can host a wide range of applications in rescue operations, military, private, and commercial settings. Multimedia conferencing is the basis of a wealth of “killer†applications that can be deployed in MANETs. Some examples are audio/video conferencing, multiplayer games, and online public debating. Signaling is the nerve center of multimedia conferences—it establishes, modifies, and tears down conferences. This paper focuses on signaling for multimedia conferences in MANETs. We review the state of the art and propose a novel architecture based on application-level clusters. Our validation employed SIP as the implementation technology and OPNET as our simulation tool. Our clusters are constructed dynamically and the nodes that act as cluster heads are elected based on their capabilities. The capabilities are published and discovered using a simple application-level protocol. The architectural principles and the clustering operations are discussed. Our SIP-based implementation is also presented along with the performance evaluation. Keywords: MANET, SIP-technology, OPNET-simulation tool, cluste

    Multiparty/Multimedia Conferencing in Mobile Ad-Hoc Networks for Improving Communications between Firefighters

    Get PDF
    In current practice, firefighters’ communications systems are verbal, using a simplex Radio Frequency (RF) system (walkie-talkie). They use a push-to-talk mechanism in which only one person can talk at any time and all other firefighters will hear the messages. They use special codes (e.g. 1008, 1009, etc.) to express their current situation. Firefighters of the same team need to be in visual contact with each other at all times. This RF system does not support other functionalities (e.g. video communications, conference calls). In addition, because communication between firefighters is a flat structure, private communications is not possible. Mobile Ad-Hoc Networks (MANETs) are infrastructure-less and self-organized wireless networks of mobile devices, which are not based on any centralized control. MANETs are suitable for the hosting of a wide range of applications in emergency situations, such as natural or human-induced disasters, and military and commercial settings. Multimedia conferencing is an important category of application that can be deployed in MANETs. This includes well-known sets of applications, such as audio/video conferencing, data communications, and multiplayer games. Conferencing can be defined as the conversational exchange of data content between several parties. Conferencing requires, at the very least, the opening of two sessions: a call signaling session, and a media handling session. Call signaling is used to set up, modify, and terminate the conference. Media handling is used to cover the transportation of the media, and to control/manage the media mixers and media connections. So far, very little attention has been devoted to the firefighters’ communication system. In the present work, we focus on building a new communication system for firefighters using multimedia conferencing/sub-conferencing in MANETs. The background information for the firefighters’ current communications system and MANETs, along with the multimedia conferencing, is provided. The limitations of this system are determined, and the requirements are derived to determine the functionalities of a better communication system that will overcome current limitations. We have proposed a cluster-based signaling architecture that meets our requirements. We have also identified a state-of-the-art media handling and mixing system that meets most of our requirements, and have adapted it to inter-work with our signaling system. We have implemented the proposed architecture using SIP signaling protocol. Performance measurements have been performed on the prototype. Through experiments, we have found that the new multimedia communication system is a very promising approach to solve the current firefighters’ communication problems

    Introducing Real-Time Collaboration Systems: Development of a Conceptual Scheme and Research Directions

    Get PDF
    This paper presents Real-Time Collaboration (RTC), a new and emerging type of Information and Communication Technology (ICT) system that has its roots in both the telecommunications and groupware market. The aim of the paper is twofold. First, it outlines the evolution of RTC systems and offers a conceptualization of RTC consisting of usage scenarios and four main building blocks - integration of communication channels, presence information, context integration, and further collaboration features. Second, in order to understand the organizational implications of this complex and socially embedded information system, the paper intends to offer a starting point for future research on RTC by touching upon and systematizing different directions and typical questions for researching RTC and its organizational implications

    Architectural and mobility management designs in internet-based infrastructure wireless mesh networks

    Get PDF
    Wireless mesh networks (WMNs) have recently emerged to be a cost-effective solution to support large-scale wireless Internet access. They have numerous ap- plications, such as broadband Internet access, building automation, and intelligent transportation systems. One research challenge for Internet-based WMNs is to design efficient mobility management techniques for mobile users to achieve seamless roam- ing. Mobility management includes handoff management and location management. The objective of this research is to design new handoff and location management techniques for Internet-based infrastructure WMNs. Handoff management enables a wireless network to maintain active connections as mobile users move into new service areas. Previous solutions on handoff manage- ment in infrastructure WMNs mainly focus on intra-gateway mobility. New handoff issues involved in inter-gateway mobility in WMNs have not been properly addressed. Hence, a new architectural design is proposed to facilitate inter-gateway handoff man- agement in infrastructure WMNs. The proposed architecture is designed to specifi- cally address the special handoff design challenges in Internet-based WMNs. It can facilitate parallel executions of handoffs from multiple layers, in conjunction with a data caching mechanism which guarantees minimum packet loss during handoffs. Based on the proposed architecture, a Quality of Service (QoS) handoff mechanism is also proposed to achieve QoS requirements for both handoff and existing traffic before and after handoffs in the inter-gateway WMN environment. Location management in wireless networks serves the purpose of tracking mobile users and locating them prior to establishing new communications. Existing location management solutions proposed for single-hop wireless networks cannot be directly applied to Internet-based WMNs. Hence, a dynamic location management framework in Internet-based WMNs is proposed that can guarantee the location management performance and also minimize the protocol overhead. In addition, a novel resilient location area design in Internet-based WMNs is also proposed. The formation of the location areas can adapt to the changes of both paging load and service load so that the tradeoff between paging overhead and mobile device power consumption can be balanced, and at the same time, the required QoS performance of existing traffic is maintained. Therefore, together with the proposed handoff management design, efficient mobility management can be realized in Internet-based infrastructure WMNs

    Local Coordination for Interpersonal Communication Systems

    Get PDF
    The decomposition of complex applications into modular units is anacknowledged design principle for creating robust systems and forenabling the flexible re-use of modules in new applicationcontexts. Typically, component frameworks provide mechanisms and rulesfor developing software modules in the scope of a certain programmingparadigm or programming language and a certain computing platform. Forexample, the JavaBeans framework is a component framework for thedevelopment of component-based systems -- in the Java environment.In this thesis, we present a light-weight, platform-independentapproach that views a component-based application as a set of ratherloosely coupled parallel processes that can be distributed on multiplehosts and are coordinated through a protocol. The core of ourframework is the Message Bus (Mbus): an asynchronous, message-orientedcoordination protocol that is based on Internet technologies andprovides group communication between application components.Based on this framework, we have developed a local coordinationarchitecture for decomposed multimedia conferencing applications thatis designed for endpoint and gateway applications. One element of thisarchitecture is an Mbus-based protocol for the coordination of callcontrol components in conferencing applications

    SIP servlets-based service provisioning in MANETs

    Get PDF
    Mobile Ad-hoc NETworks (MANETs) are a part of the fourth generation networks vision. They are new wireless networks having transient mobile nodes with no need for a pre-installed infrastructure. They are of utmost interest for the future networks owing to their flexibility, effortlessness of deployment and related low cost. They come in two flavours: standalone MANETs and integrated with the conventional 3G network. Providing value-added services is the core concept of several paradigms and has been extensively studied in legacy network. However, providing such services in MANETs is a challenging process. Indeed, MANETs are known for their heterogeneous devices, limited resources, dynamic topology and frequent disconnections/connections. New SIP based solutions for signalling and media handling in these networks are emerging. Furthermore, SIP is the primary protocol for 3G networks. Therefore, SIP servlets become a promising paradigm for service provisioning in MANETs. This thesis addresses the service provisioning aspects in both standalone MANETs and integrated 3G/MANETs. The SIP servlets framework is considered as the starting point while Multihop Cellular Networks (MCNs), the widely studied networks, are used as an example of integrated 3G/MANETs. Background information is provided, architectures requirements are derived and related work is reviewed. A novel business model is proposed for service provision in standalone MANETs. The business model defines the business roles and the relationship and interfaces between them. We also propose a service invocation and execution architecture implementing the business model. The solution is based on overlay network and a distribution scheme of the SIP servlets engine. The overlay network enables self-organization and self-recovery to take into account MANETs characteristics. As for the integrated 3G/MANETs we propose high level architectural alternatives for service provisioning in MCNs. We identify the most interesting alternatives from the network operator point of view and proposed a detailed and concrete architecture for the promising alternative. Overall architecture, functional entities and procedures are presented. During this work, we built prototypes as proof-of-concept and made preliminary performance measurements, used SPIN as protocol validation tool and adopted OPNET for simulation. The results show that we can provide services in MANETs as we do in conventional networks with reasonable performance

    A Decentralized Session Management Framework for Heterogeneous Ad-Hoc and Fixed Networks

    Get PDF
    Wireless technologies are continuously evolving. Second generation cellular networks have gained worldwide acceptance. Wireless LANs are commonly deployed in corporations or university campuses, and their diffusion in public hotspots is growing. Third generation cellular systems are yet to affirm everywhere; still, there is an impressive amount of research ongoing for deploying beyond 3G systems. These new wireless technologies combine the characteristics of WLAN based and cellular networks to provide increased bandwidth. The common direction where all the efforts in wireless technologies are headed is towards an IP-based communication. Telephony services have been the killer application for cellular systems; their evolution to packet-switched networks is a natural path. Effective IP telephony signaling protocols, such as the Session Initiation Protocol (SIP) and the H 323 protocol are needed to establish IP-based telephony sessions. However, IP telephony is just one service example of IP-based communication. IP-based multimedia sessions are expected to become popular and offer a wider range of communication capabilities than pure telephony. In order to conjoin the advances of the future wireless technologies with the potential of IP-based multimedia communication, the next step would be to obtain ubiquitous communication capabilities. According to this vision, people must be able to communicate also when no support from an infrastructured network is available, needed or desired. In order to achieve ubiquitous communication, end devices must integrate all the capabilities necessary for IP-based distributed and decentralized communication. Such capabilities are currently missing. For example, it is not possible to utilize native IP telephony signaling protocols in a totally decentralized way. This dissertation presents a solution for deploying the SIP protocol in a decentralized fashion without support of infrastructure servers. The proposed solution is mainly designed to fit the needs of decentralized mobile environments, and can be applied to small scale ad-hoc networks or also bigger networks with hundreds of nodes. A framework allowing discovery of SIP users in ad-hoc networks and the establishment of SIP sessions among them, in a fully distributed and secure way, is described and evaluated. Security support allows ad-hoc users to authenticate the sender of a message, and to verify the integrity of a received message. The distributed session management framework has been extended in order to achieve interoperability with the Internet, and the native Internet applications. With limited extensions to the SIP protocol, we have designed and experimentally validated a SIP gateway allowing SIP signaling between ad-hoc networks with private addressing space and native SIP applications in the Internet. The design is completed by an application level relay that permits instant messaging sessions to be established in heterogeneous environments. The resulting framework constitutes a flexible and effective approach for the pervasive deployment of real time applications.The invention of the phone has radically changed the way people communicate, as it allowed persons to get in contact instantly no matter of their location. However, phone communication has been confined for decades to a fixed location, be it one's own house or a phone boot. The widespread affirmation of cellular technologies has had for fixed telephony a similar impact that the invention of the phone has had on communications years before. With mobile phones, people are enabled to talk with each other anytime and anywhere. Internet has also revolutionized the way people communicate. E-mails have soon become one of the Internet killer applications. Later on, instant messaging, popularly known as chatting, has gained huge consensus among net surfers. Only recently, the use of the Internet for voice communication is becoming mainstream, and the so called Voice over IP (VoIP) applications (Skype is probably the most famous for the masses) are becoming common use. Despite its popularity, Internet still suffers from the inherent limitations that affected early telephony: it is fixed. The usage of Internet on the move still does not constitute the easiest and most satisfactory user experience, due to capabilities and limitations of the access technology, terminals, services and applications. Efforts for mobilizing the Internet are ongoing both in the industrial and in the academic worlds, but several bricks are needed to build the wall of mobile Internet. This dissertation provides one of these bricks, describing a solution that allows the deployment of multimedia applications (chat, VoIP, gaming) in mobile environments. In other words, this dissertation gives solutions for facilitating ubiquitous Internet-based communication, anytime and anywhere. The vision that we want to become true is that Internet must become mobile in the same way as fixed telephony has become mobile thanks to the cellular technology. More than this, we do not want that users are limited by the presence of an infrastructure to communicate with each other. In order to achieve this, we present solutions to deploy Internet-based services and applications in environments where no support from servers is available. In other words, we enable direct device-to-device, user-to-user Internet communication. Our contribution is mainly focused on the steps needed to establish the communication, the so called session establishment or signaling phase. We have validated our signaling framework by building a chat application that utilizes its features and works in server-less environments. The custom server-less solution does not prohibit to connect at the same time with the Internet, so that one can engage in a chess game using direct communication with a person in the proximity while having a chat in progress with a friend using standard Internet services. The challenge that we had to face is that Internet services and applications are usually built implying support from a centralized server. In order to deploy direct user-to-user Internet services, while maintaining interoperability with mainstream services, we had to enhance native Internet services to work without infrastructure support, without sacrificing interoperability with standard Internet applications. To conclude, we have placed our brick on the still yet to be completed wall of mobile Internet. Our hope is that one day, thanks also to this brick, everybody will be able to enjoy Internet-based applications as easily as now it is possible to use mobile telephony services

    Cross-layer signalling and middleware: a survey for inelastic soft real-time applications in MANETs

    Get PDF
    This paper provides a review of the different cross-layer design and protocol tuning approaches that may be used to meet a growing need to support inelastic soft real-time streams in MANETs. These streams are characterised by critical timing and throughput requirements and low packet loss tolerance levels. Many cross-layer approaches exist either for provision of QoS to soft real-time streams in static wireless networks or to improve the performance of real and non-real-time transmissions in MANETs. The common ground and lessons learned from these approaches, with a view to the potential provision of much needed support to real-time applications in MANETs, is therefore discussed
    • …
    corecore