16 research outputs found

    Signal-Adapted Tight Frames on Graphs

    Full text link

    Spectral Characterization of functional MRI data on voxel-resolution cortical graphs

    Full text link
    The human cortical layer exhibits a convoluted morphology that is unique to each individual. Conventional volumetric fMRI processing schemes take for granted the rich information provided by the underlying anatomy. We present a method to study fMRI data on subject-specific cerebral hemisphere cortex (CHC) graphs, which encode the cortical morphology at the resolution of voxels in 3-D. We study graph spectral energy metrics associated to fMRI data of 100 subjects from the Human Connectome Project database, across seven tasks. Experimental results signify the strength of CHC graphs' Laplacian eigenvector bases in capturing subtle spatial patterns specific to different functional loads as well as experimental conditions within each task.Comment: Fixed two typos in the equations; (1) definition of L in section 2.1, paragraph 1. (2) signal de-meaning and normalization in section 2.4, paragraph

    Graph Spectral Characterization of Brain Cortical Morphology

    Full text link
    The human brain cortical layer has a convoluted morphology that is unique to each individual. Characterization of the cortical morphology is necessary in longitudinal studies of structural brain change, as well as in discriminating individuals in health and disease. A method for encoding the cortical morphology in the form of a graph is presented. The design of graphs that encode the global cerebral hemisphere cortices as well as localized cortical regions is proposed. Spectral metrics derived from these graphs are then studied and proposed as descriptors of cortical morphology. As proof-of-concept of their applicability in characterizing cortical morphology, the metrics are studied in the context of hemispheric asymmetry as well as gender dependent discrimination of cortical morphology.Comment: arXiv admin note: substantial text overlap with arXiv:1810.1033
    corecore