778 research outputs found

    Sampling and Reconstruction of Shapes with Algebraic Boundaries

    Get PDF
    We present a sampling theory for a class of binary images with finite rate of innovation (FRI). Every image in our model is the restriction of \mathds{1}_{\{p\leq0\}} to the image plane, where \mathds{1} denotes the indicator function and pp is some real bivariate polynomial. This particularly means that the boundaries in the image form a subset of an algebraic curve with the implicit polynomial pp. We show that the image parameters --i.e., the polynomial coefficients-- satisfy a set of linear annihilation equations with the coefficients being the image moments. The inherent sensitivity of the moments to noise makes the reconstruction process numerically unstable and narrows the choice of the sampling kernels to polynomial reproducing kernels. As a remedy to these problems, we replace conventional moments with more stable \emph{generalized moments} that are adjusted to the given sampling kernel. The benefits are threefold: (1) it relaxes the requirements on the sampling kernels, (2) produces annihilation equations that are robust at numerical precision, and (3) extends the results to images with unbounded boundaries. We further reduce the sensitivity of the reconstruction process to noise by taking into account the sign of the polynomial at certain points, and sequentially enforcing measurement consistency. We consider various numerical experiments to demonstrate the performance of our algorithm in reconstructing binary images, including low to moderate noise levels and a range of realistic sampling kernels.Comment: 12 pages, 14 figure

    A multi-level algorithm for the solution of moment problems

    Full text link
    We study numerical methods for the solution of general linear moment problems, where the solution belongs to a family of nested subspaces of a Hilbert space. Multi-level algorithms, based on the conjugate gradient method and the Landweber--Richardson method are proposed that determine the "optimal" reconstruction level a posteriori from quantities that arise during the numerical calculations. As an important example we discuss the reconstruction of band-limited signals from irregularly spaced noisy samples, when the actual bandwidth of the signal is not available. Numerical examples show the usefulness of the proposed algorithms

    Exact and approximate Strang-Fix conditions to reconstruct signals with finite rate of innovation from samples taken with arbitrary kernels

    No full text
    In the last few years, several new methods have been developed for the sampling and exact reconstruction of specific classes of non-bandlimited signals known as signals with finite rate of innovation (FRI). This is achieved by using adequate sampling kernels and reconstruction schemes. An example of valid kernels, which we use throughout the thesis, is given by the family of exponential reproducing functions. These satisfy the generalised Strang-Fix conditions, which ensure that proper linear combinations of the kernel with its shifted versions reproduce polynomials or exponentials exactly. The first contribution of the thesis is to analyse the behaviour of these kernels in the case of noisy measurements in order to provide clear guidelines on how to choose the exponential reproducing kernel that leads to the most stable reconstruction when estimating FRI signals from noisy samples. We then depart from the situation in which we can choose the sampling kernel and develop a new strategy that is universal in that it works with any kernel. We do so by noting that meeting the exact exponential reproduction condition is too stringent a constraint. We thus allow for a controlled error in the reproduction formula in order to use the exponential reproduction idea with arbitrary kernels and develop a universal reconstruction method which is stable and robust to noise. Numerical results validate the various contributions of the thesis and in particular show that the approximate exponential reproduction strategy leads to more stable and accurate reconstruction results than those obtained when using the exact recovery methods.Open Acces

    Slepian functions and their use in signal estimation and spectral analysis

    Full text link
    It is a well-known fact that mathematical functions that are timelimited (or spacelimited) cannot be simultaneously bandlimited (in frequency). Yet the finite precision of measurement and computation unavoidably bandlimits our observation and modeling scientific data, and we often only have access to, or are only interested in, a study area that is temporally or spatially bounded. In the geosciences we may be interested in spectrally modeling a time series defined only on a certain interval, or we may want to characterize a specific geographical area observed using an effectively bandlimited measurement device. It is clear that analyzing and representing scientific data of this kind will be facilitated if a basis of functions can be found that are "spatiospectrally" concentrated, i.e. "localized" in both domains at the same time. Here, we give a theoretical overview of one particular approach to this "concentration" problem, as originally proposed for time series by Slepian and coworkers, in the 1960s. We show how this framework leads to practical algorithms and statistically performant methods for the analysis of signals and their power spectra in one and two dimensions, and on the surface of a sphere.Comment: Submitted to the Handbook of Geomathematics, edited by Willi Freeden, Zuhair M. Nashed and Thomas Sonar, and to be published by Springer Verla
    • …
    corecore