654 research outputs found

    Signal reconstruction by means of Embedding, Clustering and AutoEncoder Ensembles

    Get PDF
    We study the denoising and reconstruction of corrupted signals by means of AutoEncoder ensembles. In order to guarantee experts' diversity in the ensemble, we apply, prior to learning, a dimensional reduction pass (to map the examples into a suitable Euclidean space) and a partitional clustering pass: each cluster is then used to train a distinct AutoEncoder. We study the approach with an audio file benchmark: the original signals are artificially corrupted by Doppler effect and reverb. The results support the comparative effectiveness of the approach, w.r.t. the approach based on a single AutoEncoder. The processing pipeline using Local Linear Embedding, k means, then k Convolutional Denoising AutoEncoders reduces the reconstruction error by 35% w.r.t. the baseline approach

    Deep Learning and Linear Programming for Automated Ensemble Forecasting and Interpretation

    Full text link
    This paper presents an ensemble forecasting method that shows strong results on the M4 Competition dataset by decreasing feature and model selection assumptions, termed DONUT (DO Not UTilize human beliefs). Our assumption reductions, primarily consisting of auto-generated features and a more diverse model pool for the ensemble, significantly outperform the statistical, feature-based ensemble method FFORMA by Montero-Manso et al. (2020). We also investigate feature extraction with a Long Short-term Memory Network (LSTM) Autoencoder and find that such features contain crucial information not captured by standard statistical feature approaches. The ensemble weighting model uses LSTM and statistical features to combine the models accurately. The analysis of feature importance and interaction shows a slight superiority for LSTM features over the statistical ones alone. Clustering analysis shows that essential LSTM features differ from most statistical features and each other. We also find that increasing the solution space of the weighting model by augmenting the ensemble with new models is something the weighting model learns to use, thus explaining part of the accuracy gains. Moreover, we present a formal ex-post-facto analysis of an optimal combination and selection for ensembles, quantifying differences through linear optimization on the M4 dataset. Our findings indicate that classical statistical time series features, such as trend and seasonality, alone do not capture all relevant information for forecasting a time series. On the contrary, our novel LSTM features contain significantly more predictive power than the statistical ones alone, but combining the two feature sets proved the best in practice

    Model-based deep autoencoders for clustering single-cell RNA sequencing data with side information

    Get PDF
    Clustering analysis has been conducted extensively in single-cell RNA sequencing (scRNA-seq) studies. scRNA-seq can profile tens of thousands of genes\u27 activities within a single cell. Thousands or tens of thousands of cells can be captured simultaneously in a typical scRNA-seq experiment. Biologists would like to cluster these cells for exploring and elucidating cell types or subtypes. Numerous methods have been designed for clustering scRNA-seq data. Yet, single-cell technologies develop so fast in the past few years that those existing methods do not catch up with these rapid changes and fail to fully fulfil their potential. For instance, besides profiling transcription expression levels of genes, recent single-cell technologies can capture other auxiliary information at the single-cell level, such as protein expression (multi-omics scRNA-seq) and cells\u27 spatial location information (spatial-resolved scRNA-seq). Most existing clustering methods for scRNA-seq are performed in an unsupervised manner and fail to exploit available side information for optimizing clustering performance. This dissertation focuses on developing novel computational methods for clustering scRNA-seq data. The basic models are built on a deep autoencoder (AE) framework, which is coupled with a ZINB (zero-inflated negative binomial) loss to characterize the zero-inflated and over-dispersed scRNA-seq count data. To integrate multi-omics scRNA-seq data, a multimodal autoencoder (MAE) is employed. It applies one encoder for the multimodal inputs and two decoders for reconstructing each omics of data. This model is named scMDC (Single-Cell Multi-omics Deep Clustering). Besides, it is expected that cells in spatial proximity tend to be of the same cell types. To exploit cellular spatial information available for spatial-resolved scRNA-seq (sp-scRNA-seq) data, a novel model, DSSC (Deep Spatial-constrained Single-cell Clustering), is developed. DSSC integrates the spatial information of cells into the clustering process by two steps: 1) the spatial information is encoded by using a graphical neural network model; 2) cell-to-cell constraints are built based on the spatially expression pattern of the marker genes and added in the model to guide the clustering process. DSSC is the first model which can utilize the information from both the spatial coordinates and the marker genes to guide the cell/spot clustering. For both scMDC and DSSC, a clustering loss is optimized on the bottleneck layer of autoencoder along with the learning of feature representation. Extensive experiments on both simulated and real datasets demonstrate that scMDC and DSSC boost clustering performance significantly while costing no extra time and space during the training process. These models hold great promise as valuable tools for harnessing the full potential of state-of-the-art single-cell data

    Branched Variational Autoencoder Classifiers

    Full text link
    This paper introduces a modified variational autoencoder (VAEs) that contains an additional neural network branch. The resulting branched VAE (BVAE) contributes a classification component based on the class labels to the total loss and therefore imparts categorical information to the latent representation. As a result, the latent space distributions of the input classes are separated and ordered, thereby enhancing the classification accuracy. The degree of improvement is quantified by numerical calculations employing the benchmark MNIST dataset for both unrotated and rotated digits. The proposed technique is then compared to and then incorporated into a VAE with fixed output distributions. This procedure is found to yield improved performance for a wide range of output distributions

    Model-based deep autoencoders for characterizing discrete data with application to genomic data analysis

    Get PDF
    Deep learning techniques have achieved tremendous successes in a wide range of real applications in recent years. For dimension reduction, deep neural networks (DNNs) provide a natural choice to parameterize a non-linear transforming function that maps the original high dimensional data to a lower dimensional latent space. Autoencoder is a kind of DNNs used to learn efficient feature representation in an unsupervised manner. Deep autoencoder has been widely explored and applied to analysis of continuous data, while it is understudied for characterizing discrete data. This dissertation focuses on developing model-based deep autoencoders for modeling discrete data. A motivating example of discrete data is the count data matrix generated by single-cell RNA sequencing (scRNA-seq) technology which is widely used in biological and medical fields. scRNA-seq promises to provide higher resolution of cellular differences than bulk RNA sequencing and has helped researchers to better understand complex biological questions. The recent advances in sequencing technology have enabled a dramatic increase in the throughput to thousands of cells for scRNA-seq. However, analysis of scRNA-seq data remains a statistical and computational challenge. A major problem is the pervasive dropout events obscuring the discrete matrix with prevailing \u27false\u27 zero count observations, which is caused by the shallow sequencing depth per cell. To make downstream analysis more effective, imputation, which recovers the missing values, is often conducted as the first step in preprocessing scRNA-seq data. Several imputation methods have been proposed. Of note is a deep autoencoder model, which proposes to explicitly characterize the count distribution, over-dispersion, and sparsity of scRNA-seq data using a zero-inflated negative binomial (ZINB) model. This dissertation introduces a model-based deep learning clustering model ? scDeepCluster for clustering analysis of scRNA-seq data. The scDeepCluster is a deep autoencoder which simultaneously learns feature representation and clustering via explicit modeling of scRNA-seq data generation using the ZINB model. Based on testing extensive simulated datasets and real datasets from different representative single-cell sequencing platforms, scDeepCluster outperformed several state-of-the-art methods under various clustering performance metrics and exhibited improved scalability, with running time increasing linearly with the sample size. Although this model-based deep autoencoder approach has demonstrated superior performance, it is over-permissive in defining ZINB model space, which can lead to an unidentifiable model and make results unstable. Next, this dissertation proposes to impose a regularization that takes dropout events into account. The regularization uses a differentiable categorical distribution - Gumbel-Softmax to explicitly model the dropout events, and minimizes the Maximum Mean Discrepancy (MMD) between the reconstructed randomly masked matrix and the raw count matrix. Imputation analyses showed that the proposed regularized model-based autoencoder significantly outperformed the vanilla model-based deep autoencoder
    • …
    corecore