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ABSTRACT 

MODEL-BASED DEEP AUTOENCODERS FOR CLUSTERING SINGLE-CELL 

RNA SEQUENCING DATA WITH SIDE INFORMATION 

by 
Xiang Lin 

Clustering analysis has been conducted extensively in single-cell RNA 

sequencing (scRNA-seq) studies. scRNA-seq can profile tens of thousands of 

genes’ activities within a single cell. Thousands or tens of thousands of cells can 

be captured simultaneously in a typical scRNA-seq experiment. Biologists would 

like to cluster these cells for exploring and elucidating cell types or subtypes. 

Numerous methods have been designed for clustering scRNA-seq data. Yet, 

single-cell technologies develop so fast in the past few years that those existing 

methods do not catch up with these rapid changes and fail to fully fulfil their 

potential. For instance, besides profiling transcription expression levels of genes, 

recent single-cell technologies can capture other auxiliary information at the 

single-cell level, such as protein expression (multi-omics scRNA-seq) and cells’ 

spatial location information (spatial-resolved scRNA-seq). Most existing 

clustering methods for scRNA-seq are performed in an unsupervised manner 

and fail to exploit available side information for optimizing clustering performance. 

This dissertation focuses on developing novel computational methods for 

clustering scRNA-seq data. The basic models are built on a deep autoencoder 

(AE) framework, which is coupled with a ZINB (zero-inflated negative binomial) 

loss to characterize the zero-inflated and over-dispersed scRNA-seq count data. 

To integrate multi-omics scRNA-seq data, a multimodal autoencoder (MAE) is 



employed. It applies one encoder for the multimodal inputs and two decoders for 

reconstructing each omics of data. This model is named scMDC (Single-Cell 

Multi-omics Deep Clustering). Besides, it is expected that cells in spatial 

proximity tend to be of the same cell types. To exploit cellular spatial information 

available for spatial-resolved scRNA-seq (sp-scRNA-seq) data, a novel model, 

DSSC (Deep Spatial-constrained Single-cell Clustering), is developed. DSSC 

integrates the spatial information of cells into the clustering process by two steps: 

1) the spatial information is encoded by using a graphical neural network model; 

2) cell-to-cell constraints are built based on the spatially expression pattern of the 

marker genes and added in the model to guide the clustering process. DSSC is 

the first model which can utilize the information from both the spatial coordinates 

and the marker genes to guide the cell/spot clustering. For both scMDC and 

DSSC, a clustering loss is optimized on the bottleneck layer of autoencoder 

along with the learning of feature representation. Extensive experiments on both 

simulated and real datasets demonstrate that scMDC and DSSC boost clustering 

performance significantly while costing no extra time and space during the 

training process. These models hold great promise as valuable tools for 

harnessing the full potential of state-of-the-art single-cell data.
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CHAPTER 1 

INTRODUCTION 

 

 

1.1 Multi-omics scRNA-seq 

Single-cell RNA sequence (scRNA-seq) profiles a high-resolution picture inside 

an individual cell. Based on the scRNA-seq technology, recently, many 

multimodal sequencing technologies have been developed to jointly profile 

multiple modalities of data in a single cell. For example, cellular Indexing of 

Transcriptomes and Epitopes by Sequencing (CITE-seq) (Figure 1.1) and RNA 

expression and protein sequencing assay (REAP-seq) have been developed to 

profile mRNA expression and quantify surface protein simultaneously at cellular 

level (Mimitou et al., 2019; Peterson et al., 2017). Specifically, CITE-Seq 

employs existing single-cell sequencing technologies, such as the 10X Genomics 

Chromium platform (Zheng et al., 2017), and allows the counting of Antibody-

Derived Tags (ADT) to quantify the cell surface protein abundance. Each cell 

with ADT labels and DNA-barcoded microbeads will be encapsulated in a droplet 

for the single-cell sequencing (Stoeckius et al., 2017). REAP-seq also combines 

DNA-barcoded antibodies with existing scRNA-seq approaches to measure the 

expression levels of genes and cell-surface proteins (Peterson et al., 2017). In 

addition to studying single-cell transcriptomes and surface proteins, recently, the 

development of single-cell approaches for the assay of the transposase 

accessible chromatin sequencing (scATAC-seq) provides us a chance to 

measure chromatin accessibility in a single cell (Buenrostro et al., 2015). 
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Specifically, these technologies are designed to identify open chromatin regions 

in the genome by using the hyperactive Tn5 transposase, which simultaneously 

tags and fragments DNA sequences in open chromatin regions (Cusanovich et 

al., 2015). The scATAC-seq enables us to explore cell type-specific biological 

activities by investigating the chromatin-accessibility signatures, such as the 

transcription factors that control the gene expression of cells. More recently, 

some multi-omics single-cell technologies have been developed to jointly profile 

chromatin accessibility and gene expression within a single cell (Ma, McDermaid, 

Xu, Chang, & Ma, 2020), such as SNARE-seq and 10X Single-Cell Multiome 

ATAC + Gene Expression (we denote it as SMAGE-seq) (S. Chen, Lake, & 

Zhang, 2019; S. Ma et al., 2020). Overall, these multimodal sequencing 

technologies provide us with a more comprehensive and complicated profile of a 

single cell. Therefore, computational tools for jointly integrating different data 

views for downstream analyses, such as clustering, are desired for exploiting 

these new powerful experimental technologies. 

It is noted that in the multimodal data, the biological information provided 

by different modalities is complementary (Peterson et al., 2017; Stoeckius et al., 

2017), and each modality generally has its own strengths and weaknesses. 

Using CITE-seq as an example, its ADT modal focuses on surface proteins. ADT 

data have demonstrated a low dropout rate 4 and thus can reliably quantify gene 

activities. For the five CITE-seq datasets analyzed in this study, we observed 

dropout rates of up to 12% in ADT data. In contrast, there were more than 80% 

or even 90% zero entries in its corresponding mRNA data. For most genes, 
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protein is the final product to fulfill their functions and messenger RNA is an 

immediate product. Thus, ADT data seems ideal for characterizing cell functions 

and types. However, due to current technique limits, ADT can profile only up to a 

couple of hundreds of genes. Because of this limit, investigators generally 

include marker genes for well-known cell types in ADT modal first. Therefore, 

ADT data is good at identifying common cell types (Stoeckius et al., 2017; X. 

Wang et al., 2020), such as CD4+ and CD8+ T cells, when their marker genes 

are profiled. 

However, because of its limited dimensions, ADT data may not detect rare 

or minor cell types well. In contrast, the full transcriptome of mRNA data can 

capture comprehensive cell types. Nevertheless, clustering cells based on 

scRNA-seq may be challenged by its large dropout rate and sparse signal with 

high dimensionality. Furthermore, the quantity of ADT and mRNA sources 

produced by the same gene may not be the same when considering the post-

transcriptional and post-translational regulations (Haider & Pal, 2013; Stoeckius 

et al., 2017). In this case, ADT and mRNA data provide complementary 

information in cell type identification (X. Wang et al., 2020). For SNARE-seq and 

SMAGE-seq, scATAC-seq data provide chromatin accessibility information which 

is also complementary to mRNA data (S. Chen et al., 2019). Thus, by integrating 

the information from multimodalities, we should be able to arrive at a higher 

resolution of cell typing.  
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Figure 1.1 The rationale of CITE-seq technology. (a) the DNA-barcoded with 
antibodies used in CITE-seq. (b) Schematic view of CITE-seq with Drop-seq 
technology. Briefly, cells are incubated with antibodies, washed, and passed 
through a microfluidic chip where a single cell and one bead are occasionally 
encapsulated in the same droplet. After cell lysis, mRNAs and antibody-oligos 
anneal to oligos on Drop-seq beads, linking cell barcodes with cellular transcripts 
and antibody-derived oligos.  
 
Source: Stoeckius, M., Hafemeister, C., Stephenson, W., Houck-Loomis, B., Chattopadhyay, P. 
K., Swerdlow, H., ... & Smibert, P. (2017). Large-scale simultaneous measurement of epitopes 
and transcriptomes in single cells. Nature methods, 14(9), 865. 10.1038/nmeth.4380 
 
 

1.2 Spatial-resolved scRNA-seq 

The conventional scRNA-seq alone leaves the tissue landscape undefined as 

cells are dissociated from their respective tissues and suspended in solution 

(Longo, Guo, Ji, & Khavari, 2021), neglecting and underappreciating the spatial 

complexity of cells and their relations to functions (Liao, Lu, Shao, Zhu, & Fan, 

2021). Furthermore, cellular organization and intercellular communication 

networks for novel types identified by scRNA-seq remain uncharacterized unless 

ligand-receptor relationships are established (Efremova, Vento-Tormo, 

Teichmann, & Vento-Tormo, 2020; Skelly et al., 2018; S. Wang, Karikomi, 

MacLean, & Nie, 2019). As cellular spatial distributions are deeply intertwined 

with gene expression and cell functions (Zhuang, 2021), retaining this information 

is pivotal to further understand the collective dynamics of biological activities. 

https://dx.doi.org/10.1038%2Fnmeth.4380
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Spatially resolved single-cell transcriptomics (sp-scRNA-seq) provides an 

exciting opportunity to map RNA molecules in their tissue locations, allowing for 

comprehensive profiling of cell heterogeneity (Liao et al., 2021).  

Basically, the technologies to profile the spatial-resolved single-cell 

transcriptomics (or targeted genes) can be divided into two types: 1) 

hybridization-based (or called image-based) approaches, such as MERFISH, 

smFISH, and osmFISH. These technologies profile the physical location 

attributes of cells by single-molecule fluorescence in situ hybridization (Codeluppi 

et al., 2018; Miller, Bambah-Mukku, Dulac, Zhuang, & Fan, 2021). Pioneering 

studies in spatial genomics sought to explore fluorescence in situ hybridization 

(FISH) and digital imaging microscopy to allow for the detection of single RNA 

molecules in single cells (Femino, Fay, Fogarty, & Singer, 1998). Thereafter, 

various FISH probes were developed for single-cell transcript profiling, allowing 

for higher accuracy and sensitivity when quantifying RNA molecules at the 

single-molecule level such as single-molecule in situ hybridization (smFISH) 

(Femino et al., 1998; Kwon, 2013; Lubeck & Cai, 2012; Shah, Lubeck, Zhou, & 

Cai, 2016). As some smFISH methods are multiplexed by barcoding (Femino et 

al., 1998; Lubeck & Cai, 2012), limitations such as optical crowding and transcript 

length hinder marker gene targeting and cell-type mapping (Femino et al., 1998; 

Shah et al., 2016). Codeluppi et al. developed a non-barcoded and unamplified 

cyclic-ouroboros smFISH (osmFISH) method, optimized for brain tissue, to 

overcome the limitations of other smFISH methods (Codeluppi et al., 2018). This 

method demonstrates the ability to process and map large tissue areas and 
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allows for the construction of data-driven reference atlases of human tissue. 2) 

Sequencing-based approaches, such as 10x Visium (see Figure 1.2), and Slide-

seq. A joint robust dissection of scRNA-seq data with spatially resolved single-

cell transcriptomics captures a detailed illustration of the concerted cell-cell 

interactions within the tissue architecture. These technologies provide spatially 

resolved, untargeted transcriptomic profiling at the pixel level, with a pixel size of 

10-100μm (Larsson, Frisén, & Lundeberg, 2021). Using Visium as an example, it 

employs spatially barcoded mRNA-binding oligonucleotides grouped in spots 

(larger than one cell) on the tissue slides. The mRNA from the specialized tissue 

will bind to the oligos. Then, based on the collected mRNA, a cDNA library with 

spatial barcodes will be built, preserving the spatial information of spots. In this 

way, both the gene expression level and the cells/spots spatial organization in 

the tissue can be measured. The two types of technologies have their own 

advantages and disadvantages. Briefly, Imaging-based technologies can reach 

the single-cell resolution, but they can only profile a limited number of targeted 

genes/proteins; on the other hand, some sequencing-based technologies can 

profile the whole transcriptomes, but they cannot reach the single-cell resolution. 

Figure 1.3 shows the current spatially resolved transcriptomics method 

summarized by Liao et al.(Liao et al., 2021). It reveals the fast development of 

spatial-resolved single-cell technologies in the past few years. 
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Figure 1.2 The rational of 10X Visium spatial transcriptome sequencing 

technology. Fresh-frozen tissue sections are placed on the slide, which is H&E 

stained and imaged in bright field. Depending on the tissue, an average of 1-10 

cells will cover a spot. The spatial barcode assigned to the spot is incorporated 

during cDNA synthesis and enables gene expression data to be mapped back to 

its location within the tissue. Data is processed with the 10X SpaceRanger 

analysis software and can be visualized with the Loupe Browser software.  
 

Source: Image provided by 10x Genomics (https://www.10xgenomics.com/). 

 

 

 

Figure 1.3 Throughput of genes and cells for each spatially resolved 
transcriptomics method.  
 
Source: Liao, J., Lu, X., Shao, X., Zhu, L., & Fan, X. (2021). Uncovering an organ’s molecular 
architecture at single-cell resolution by spatially resolved transcriptomics. Trends in 
Biotechnology, 39(1), 43-58. https://doi.org/10.1016/j.tibtech.2020.05.006 
 

https://www.10xgenomics.com/
https://doi.org/10.1016/j.tibtech.2020.05.006
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Such high throughput data generation, both multi-omics and spatial-

resolved scRNA-seq, revealed the great demands of scalable computational 

methods that can take advantages of the multi-dimensional measurements to 

efficiently improve the downstream analyses, such as the clustering and 

differential expression analysis. However, to our current knowledge, there are 

only a few methods that are specifically developed for the multi-omics scRNA-

seq data clustering, and even less methods for the spatial-resolved scRNA-seq 

data clustering. So, the existing computational methods do not catch up with the 

rapid changes in technologies and fail to fully fulfil their potential. 

 

Table 1.1 Summary of the Real CITE-seq Datasets 

Datasets Platform Tissue # of 
cells 

# of total 
genes 

# of 
ADTs 

# of 
groups 

PBMC 10X PBMC 3,762 33,538 49 16 

GSE100866 10X CBMN 1,372 33,514 10 6 

BMNC 10X BMNC 30,672 17,009 25 27 

SLN111D1 10X SLN 9,264 13,553 111 35 

SLN111D2 10X SLN 7,564 13,553 111 35 

SLN208D1 10X SLN 8,715 13,553 208 35 

SLN208D2 10X SLN 7,105 13,553 208 35 
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Table 1.2 Summary of the Real Single-cell Multiome ATAC Gene Expression 
Datasets 
 

Datasets Platform Tissue # of 
cells 

# of total 
genes 

# of 
genes 
from 
ATAC 

# of 
groups 

PBMC3k 10X PBMC 2,585 36,601 20,010 14 

PBMC10K 10X PBMC 11,020 36,601 20,010 12 

MBE18 10X Brain 4,780 32,285 21,807 18 
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CHAPTER 2 

CLUSTERING ANALYSIS OF SINGLE-CELL DATA 

 

 

2.1 Clustering Analysis of Traditional scRNA-seq Data 

Clustering analysis is an essential step in most single-cell studies and has been 

studied extensively. Based on the clustering results, researchers can explore the 

biological activities in cell type or subtype level, which could not be reached by 

studying bulk data (Kiselev, Andrews, & Hemberg, 2019; Kolodziejczyk, Kim, 

Svensson, Marioni, & Teichmann, 2015; Shapiro, Biezuner, & Linnarsson, 2013). 

Numerous clustering methods have been designed for the analysis of scRNA-

seq data. For example, Tscan applies principal component analysis (PCA) on the 

scRNA-seq data and then performs the Gaussian mixture model (GMM) 

clustering on the low-dimensional representation (Ji & Ji, 2016). Seurat V3 

employs PCA dimension reduction and performs shared nearest neighbor (SNN) 

clustering on the selected PCs (Butler, Hoffman, Smibert, Papalexi, & Satija, 

2018) for scRNA-seq data. The SNN graph can also be used for estimating the 

number of clusters (K) by using the k-nearest neighbors (kNN) or Louvain 

(Blondel, Guillaume, Lambiotte, & Lefebvre, 2008) algorithm. SC3 performs a 

consensus spectral clustering based on different types of distances between 

cells (Kiselev et al., 2017). The pervasive dropout events make single-cell mRNA 

count data to be zero-inflated and over-dispersed. A zero-inflated negative 

binomial (ZINB) model has been widely used  to account for the large dispersion 

and the dropout events (Risso, Perraudeau, Gribkova, Dudoit, & Vert, 2018; Tian, 
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Wan, Song, & Wei, 2019). Many ZINB model-based methods, including deep 

learning approaches, have been developed to analyze scRNA-seq count data, 

including ZINB-WaVE (Risso et al., 2018), DCA(Eraslan, Simon, Mircea, Mueller, 

& Theis, 2019), scVI (Lopez, Regier, Cole, Jordan, & Yosef, 2018) and 

scDeepCluster (Tian et al., 2019), to name a few. These studies show that the 

ZINB model can effectively characterize scRNA-seq data and improve the 

representation learning and clustering results. 

 

2.2 Clustering Analysis of Multi-omics scRNA-seq Data  

Clustering analysis is an essential step in most single-cell studies and has been 

studied extensively. Based on the clustering results, researchers can explore the 

biological activities in cell type or subtype level, which could not be reached by 

studying bulk data (Kiselev et al., 2019; Kolodziejczyk et al., 2015; Shapiro et al., 

2013). Numerous clustering methods have been designed for the analysis of 

scRNA-seq data. For example, Tscan applies principal component analysis (PCA) 

on the scRNA-seq data and then performs the Gaussian mixture model (GMM) 

clustering on the low-dimensional representation (Ji & Ji, 2016). Seurat 

constructs a k-nearest neighbors (KNN) graph based on the Euclidean distance 

in PCA space. With the graph, it then employs the Louvain (Blondel et al., 

2008)/Leiden algorithm to iteratively group cells together by optimizing modularity 

(Butler et al., 2018). The Louvain/Leiden algorithm has already become one of 

the most popular methods for scRNA-seq clustering. SC3 employs spectral 

clustering to obtain individual clustering results based on the distance matrices 
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derived from the Euclidean, Pearson and Spearman metrics, respectively.  It then 

computes a consensus matrix by summarizing the three individual clustering 

results. Finally, the consensus matrix is clustered using hierarchical clustering to 

produce final clustering results (Kiselev et al., 2017). However, these traditional 

single-cell clustering methods are not ready to take advantage of multi-omics 

data to improve clustering performance and are thus not applicable to multimodal 

data. 

A couple of methods have emerged for the clustering analysis of CITE-seq 

data in the past years. Recently, we proposed a single cell deep constrained 

clustering framework – scDCC that can integrate ADT information into clustering 

analysis of scRNA-seq data by manually defined constraints (Tian, Zhang, Lin, 

Wei, & Hakonarson, 2021b). BREM-SC (X. Wang et al., 2020), a hierarchical 

Bayesian mixture model, applies two multinomial models to jointly characterize 

scRNA-seq and ADT data. It assumes that the proportions (relative expression 

levels of genes or proteins) in the multinomial models follow Dirichlet distributions, 

and cell-specific random effects are introduced to model the correlation between 

the two data sources. Although BREM-SC is one of the first proposed models for 

clustering analysis of CITE-seq data, it has several limitations. Firstly, it assumes 

that the data follow a certain specific distribution. Such parametric assumptions 

may not hold in all real applications. Secondly, BREM-SC does not characterize 

the dropout events, which is the major problem in the clustering of scRNA-seq 

data. Finally, BREM-SC has a scalability issue. The running time of BREM-SC 

becomes costly slow when analyzing thousands of cells. 
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Meanwhile, CiteFuse, Seurat V4, and Specter can cluster CITE-seq data 

by using distance-based graphs. CiteFuse (Kim, Lin, Geddes, Yang, & Yang, 

2020) calculates the cell-to-cell similarity matrices of ADT and mRNA separately 

and then merges them by a similarity network fusion algorithm (B. Wang et al., 

2014). Clustering is performed on the merged similarity matrix by using graph-

based clustering algorithms such as spectral (Ng, Jordan, & Weiss, 2001) and 

Louvain algorithm (Blondel et al., 2008). However, similarity matrix-based 

clustering cannot explicitly consider the dropout events in scRNA-seq data. Hao 

et al. developed a weighted nearest neighbor (WNN) procedure in Seurat V4 for 

multi-omics data clustering (Hao et al., 2021). Briefly, the WNN procedure learns 

the weights of multimodal data and generates a similarity graph of cells by a 

weighted combination of mRNA and protein views. Van et al.(Ringeling & Canzar, 

2021) proposed a landmark-based spectral clustering (LSC) method, Spector, for 

clustering single-cell data with linear-time scalability. LSC picks a small set of 

cells as the landmarks and calculates a Gaussian kernel-based similarity matrix 

between the rest of the cells and the landmarks, then the whole Laplacian matrix 

is built. Different omics require a different choice of the number of landmarks and 

the kernel bandwidth, and consensus clustering is used for ensembles across 

modalities. Compared to BREM-SC and CiteFuse, the WNN algorithm and 

Specter run much faster and requires less memory. However, these two methods 

fail to take into consideration the dropout events in the count data too. 

Another line of research, which is relevant, focuses on learning a joint 

embedding of different modalities.  Such joint embedding is expected to improve 
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various downstream analyses, including clustering. TotalVI is a deep variational 

autoencoder which can capture the same latent space of different data types 

(Gayoso et al., 2021). With this design, totalVI can learn a joint probabilistic 

representation of the paired ADT and mRNA measurements from CITE-seq data 

that accounts for the distinct information of each modality. Similarly, for SNARE-

seq or SMAGE-seq data, Cobolt (Gong, Zhou, & Purdom, 2021) and scMM 

(Minoura, Abe, Nam, Nishikawa, & Shimamura, 2021) employ a Multimodal 

Variational Autoencoder to jointly model the multiple modalities and learn a joint 

embedding of mRNA-seq and ATAC-seq data. However, these methods focusing 

on joint embedding are not designed and optimized for clustering, although we 

can, as a naïve solution, learn joint embeddings first, which is then followed by 

simple clustering using, for example, k-means. Such a divided strategy is 

suboptimal for clustering, as shown in our experiments later. 

As we mentioned in the last three paragraphs, many existing methods fail 

to consider the dropout events in the single-cell data during the learning of 

embedding and/or clustering. However, the pervasive dropout events make 

single-cell count data to be zero-inflated and over-dispersed. To better 

characterize single-cell mRNA count data, a zero-inflated negative binomial 

(ZINB) model has been widely used to account for the large dispersion and the 

dropout events (Risso et al., 2018; Tian et al., 2019). Many ZINB model-based 

methods, including deep learning approaches, have been developed to analyze 

scRNA-seq count data, including ZINB-WaVE (Risso et al., 2018), DCA (Eraslan 

et al., 2019), scVI (Lopez et al., 2018), and scDeepCluster (Tian et al., 2019), to 
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name a few. These studies show that the ZINB model can effectively 

characterize scRNA-seq data and improve the representation learning and 

clustering results. 

 

2.3 Clustering Analysis of Spatial-resolved scRNA-seq Data  

Clustering analysis is an essential step in most single-cell studies and has been 

studied extensively. Based on the clustering results, researchers can explore the 

biological activities in cell type or subtype level, which could not be reached by 

studying bulk data (Kiselev et al., 2019; Kolodziejczyk et al., 2015; Shapiro et al., 

2013). It has been demonstrated that some cell types, such as the neurons, have 

high spatial dependency and heterogeneity (Codeluppi et al., 2018). Specifically, 

tissues are an ensemble of cell types that interactively give rise to a specific 

function. It has been shown that endothelial cells in the brain are located under 

certain spatial patterns (Stoltzfus et al., 2020; Xia, Fan, Emanuel, Hao, & Zhuang, 

2019). Furthermore, within cells of the same type, high spatial self-affinity was 

measured in ependymal cells and spatial self-evasion was observed in inhibitory 

neurons such as microglia and astrocytes (Codeluppi et al., 2018). Cell 

neighbors identified by spatio-temporal organization within tissues in complex 

organs (e.g., the brain) provides important context to make inferences regarding 

cell interactions and behaviors. As such, highly accurate and sensitive mapping 

of tissue sections is important to reveal spatially dependent cells and can be 

used to understand the convolutions of cell heterogeneity. The set of neighboring 

cells from the spatial transcriptomics studies may provide valuable information for 



16 

cell-type annotation. In other cases, such knowledge can lead to the identification 

of new cell types based on their neighborhood profiles. However, this entails that 

computational resources to analyze transcriptomic data are appropriately 

equipped with mechanisms to integrate the spatial features. Nevertheless, 

traditional methods, such as Seurat (Butler et al., 2018) and SC3 (Kiselev et al., 

2017), cannot utilize valuable spatial information in the clustering analysis. 

Some tools have been developed for spatially transcriptomic data. Giotto 

is a computational method specifically designed for spatial transcriptomic data 

analysis that performs cell-type enrichment analysis, spatially coherent gene 

detection, cell neighborhood, and interaction analyses, and spatial pattern 

recognition (Dries et al., 2021). Unlike other computational methods that are 

geared towards scRNA-seq analysis but utilize spatial information to identify cell 

types (Stuart et al., 2019), marker genes (Svensson, Teichmann, & Stegle, 2018), 

or domain patterns (Zhu, Shah, Dries, Cai, & Yuan, 2018), Giotto is purely 

centered towards spatial data analysis but is capable of integrating scRNA-seq 

data to enhance spatial-cell type enrichment analysis. In the clustering analysis, 

Giotto employs graphic clustering algorithms, such as Louvain (Blondel et al., 

2008), to find cell communities. BayesSpace is a Bayesian statistical method that 

enhances spatial transcriptomic resolution and performs clustering analysis by 

modeling dimensionally reduced representation of the single-cell count matrix 

and grouping neighboring spots to the same cluster via spatial prior (Zhao et al., 

2021). BayesSpace draws a distinction in use of a t-distributed error model to 

identify spatial clusters and employs a Markov chain Monte Carlo to estimate 
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model parameters. However, BayesSpace has a limited scope of application as it 

is majorly designed for decomposing the data with low resolution from the 

sequencing-based technologies, such as the 10x Visium. Besides, some other 

methods, such as SpaGCN (Hu et al., 2021) and stLearn (Pham et al., 2020), 

employ deep neural networks, such as CNN and GCN, to analyze the sp-scRNA-

seq data. These tools can also integrate the information from the H&E images to 

enhance the cell clustering.  

It is widely demonstrated that in many tissues, especially in the brain, 

many marker genes have exhibited strong spatial expression dependencies 

(Guillozet-Bongaarts et al., 2014; Maynard et al., 2021; Zeisel et al., 2015). 

Therefore, the information from the markers can be used as the prior knowledge 

to guide the sp-scRNA-seq analyses, especially for the clustering analysis. 

However, none of the methods mentioned in the last paragraph can incorporate 

the marker gene information in the clustering process. 
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CHAPTER 3 

MULTI-OMICS SCRNA-SEQ MODEL – SCMDC 

 

 

3.1 Introduction 

In this chapter, we introduce a multimodal deep learning model, Single Cell 

Multimodal Deep Clustering (scMDC), for the clustering analysis of multimodal 

single-cell data. The network architecture of scMDC is shown in Figure 3.1. 

scMDC employs a multimodal autoencoder (Simidjievski et al., 2019), which 

applies one encoder for the concatenated data from different modalities and two 

decoders to separately decode the data from each modal. Following 

scDeepCluster (Tian et al., 2019), we apply ZINB loss as the reconstruction loss. 

The bottleneck layer is used for a deep K-means clustering (Xie, Girshick, & 

Farhadi, 2016). To further improve latent feature learning, we introduce a 

Kullback-Leibler divergence-based loss (KL loss), which attracts similar cells and 

separates dissimilar cells (L. Chen, Wang, Zhai, & Deng, 2020). The whole 

model, including the autoencoder, the KL-loss, and the deep K-means clustering, 

are optimized simultaneously. scMDC is an end-to-end multimodal deep learning 

clustering method for modeling different multi-omics data. Taking advantage of 

graphics processing units (GPU), scMDC is very efficient in the analysis of large 

datasets. In addition, by employing a conditional autoencoder framework, scMDC 

can correct batch effect when analyzing multi-batch data. To our knowledge, 

scMDC is the first end-to-end deep clustering method that can both integrate 
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multimodal data and remove the batch effect for different types of multimodal 

data. The superior performance of scMDC is observed from the extensive 

experiments on both CITE-seq and SMAGE-seq data. After clustering, for a 

given cluster, we also detect the markers (gene or ADT) by transplanting an ACE 

model (Lu, Yu, Bonora, & Noble, 2021) to scMDC and conduct a gene set 

enrichment analysis based on the gene ranks from ACE. The meaningful results 

of these downstream analyses further support the superior clustering 

performance of scMDC. We conclude that scMDC is a promising tool for 

clustering multimodal single-cell data. 
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Figure 3.1 The architecture of scMDC. (a) scMDC has one encoder for the 

concatenated data and two decoders for each modal in the multimodal data. It 

can be used for clustering CITE-seq data and 10x Single-Cell Multiome ATAC + 

Gene Expression (SMAGE-seq) data. The spiral symbols indicate the artificial 

noises added to the data. For multi-batch datasets, scMDC will work in a 

conditional autoencoder manner. A one-hot batch vector B (in dimension b) will 

be concatenated to the input feature of the encoder (with raw feature dimension, 

m) and the decoders (with latent feature dimension, z). This is designed for batch 

effect correction. scMDC learns a latent representation Z (in dimension z) of data 

on which different modalities are integrated. A deep K-means algorithm and a 

KLD loss are implemented on Z. (b) Based on the clustering results, scMDC 

employs an ACE model to detect markers in different clusters. (c) Then, pathway 

analyses can be conducted based on the gene ranks calculated by ACE. 

 



21 

3.2 Experiments and Results 

3.2.1 Real CITE-seq data evaluation 

We first evaluate the clustering performance of scMDC on CITE-seq datasets in 

comparison with nine competing methods. The competing methods include the 

models designed for multimodal data clustering (BREM-SC, CiteFuse, and 

SeuratV4), the models developed for learning an embedding for single or 

multimodal data (SCVIS and TotalVI), and some general clustering tools for 

single-cell data (SC3 and Tscan). We test these tools on seven single-batch 

CITE-seq datasets and two multi-batch CITE-seq datasets. Of these ten methods 

under comparison, only scMDC, Seurat, and TotalVI can correct batch effect 

before clustering. We hypothesize that scMDC can boost the clustering 

performance in all the CITE-seq real datasets. Figure 3.2 shows the 

performance (AMI, NMI, and ARI) of all the methods for different datasets. 

Overall, the multimodal methods have shown clear advantage over the single-

modal methods (IDEC, SCVIS, SC3, Tscan, and Kmeans + PCA). As shown in 

Figure 3.2a, scMDC has demonstrated superior performance over competing 

methods across two metrics for most single-batch datasets except the BMNC 

dataset, in which Seurat has comparable performance. For the two multi-batch 

datasets, scMDC outperforms all the competing methods (see Figure 3.2b); 

TotalVI and Seurat are inferior to scMDC but outperform the other competing 

methods, thanks to their capability of correcting batch effect. The differences 

between the performance of scMDC and the competing methods are 

summarized in Figure 3.2c. A positive difference means a higher performance in 
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scMDC than the competing methods. We find that scMDC has a steady 

advantage over all the competing methods in multiple datasets. We then rank all 

competing methods for each dataset based on their performance metrics. Figure 

3.2d shows the averaged rank of each method for the nine datasets. We can see 

that scMDC constantly ranks number 1 in all datasets for all three metrics. In 

contrast, the second-best methods, Seurat for AMI and NMI and Specter for ARI, 

have an averaged rank of 3. Using one-sided paired t-tests on the clustering 

metrics (AMI, NMI, and ARI), we confirm that the improvements of scMDC over 

competing methods are all significant (see Appendix Table D.1). In summary, 

our results on multiple real datasets reveal that scMDC has stable and robust 

clustering performance on the CITE-seq datasets.  
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Figure 3.2 Clustering performance of scMDC and the competing methods on 
different CITE-seq datasets. All the methods are tested on (a) seven one-batch 
datasets (n=7) and (b) two two-batch datasets (n=2). In panel a and b, clustering 
performance is illustrated in a two-dimensional manner with ARI as the Y axis 
and NMI as the X axis. Circles stand for the results of the multi-omics methods 
and triangles stand for the results of the single-omics methods. (c) The 
differences between the performance of scMDC and the competing methods are 
shown in boxplots (n=9). Each boxplot shows the minimum, first quartile (Q1), 
median, third quartile (Q3), and maximum of data. The minimum and maximum 
are Q1 -1.5*IQR and Q1 + 1.5*IQR, respectively. Each data point (a difference of 
performance in a dataset) is shown by a dot. (d) We also summarized the 
performance of each method by showing the averaged ranks (n=9). Each data 
point (a rank of a method in a dataset) is shown by a dot and the standard errors 
are shown by the error bars. In panel c and d, clustering performance is 
evaluated by AMI, NMI, and ARI.  
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3.2.2 Real SMAGE-seq data evaluation 

We then test the clustering performance of scMDC on the SMAGE-seq data. 

Here we compare scMDC with four competing methods: Cobolt, scMM, SeuratV4, 

and K-means + PCA. Cobolt and scMM are designed for multi-omics data 

embedding learning. SeuratV4 is developed for CITE-seq data but here we apply 

the WNN algorithm to the SMAGE-seq data. We test these methods on three real 

SMAGE-seq datasets from 10X genomics, including two PBMC datasets and one 

embryonic mouse brain dataset. We also conducted a multi-batch experiment by 

combining two PMBC datasets (denoted as PBMC13K). For scATAC-seq data, 

we use a cell-to-gene matrix as input for scMDC, scMM, Seurat, and Kmeans. 

This matrix is built by mapping ATAC reads onto the gene regions (See method 

for details). Cobolt uses the peak count matrix as the input. Figure 3.3 shows the 

clustering performance of scMDC and the competing methods in (a) single-batch 

datasets and (b) multi-batch datasets. We find that scMDC has superior 

performance in both single- and multi-batch datasets from all the metrics (NMI 

and ARI). Cobolt is the second-best method in the tests and has a comparable 

performance with scMDC on the E18 dataset in NMI, but its performance is 

inferior to that of scMDC in other datasets. Figure 3.3c summarizes the 

differences of clustering performance between scMDC and the competing 

methods. We find that the median differences are around 0.1 in AMI and NMI, 

and around 0.3 in ARI for all the competing methods, which illustrates the 

superiority of scMDC. We then rank all competing methods for each dataset 

based on their performance metrics. Figure 3.3d shows the averaged rank of 
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each method for the four datasets. We can see that scMDC ranks best in all 

three metrics, while Cobolt is the second-best for AMI and ARI, and Seurat is the 

second-best for ARI.  Using one-sided paired t-tests done on the three raw 

performance metrics, we confirm that the improvements of scMDC over 

competing methods are all significant (See Appendix Table D.2). 

Taking the results from CITE-seq and SMAGE-seq experiments together, 

we conclude that scMDC is a general and promising clustering model for various 

single-cell multimodal data. 
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Figure 3.3 Clustering performance of scMDC and the competing methods on 

different SMAGE-seq datasets. All the methods are tested on (a) three one-batch 

datasets (n=3) and (b) one two-batch dataset (n=1). In panel a and b, clustering 

performance is illustrated in a two-dimensional manner with ARI as the Y axis 

and NMI as the X axis. Circles stand for the results of the multi-omics methods 

and triangles stand for the results of the single-omics methods. (c) The 

differences between the performance of scMDC and the competing methods are 

shown in boxplots (n=4). Each boxplot shows the minimum, first quartile (Q1), 

median, third quartile (Q3), and maximum of data. The minimum and maximum 

are Q1 - 1.5 * IQR and Q1 + 1.5 * IQR, respectively. Each data point (a 

difference of performance in a dataset) is shown by a dot. (d) We also 

summarized the performance of each method by showing the averaged ranks 

(n=4). Each data point (a rank of a method in a dataset) is shown by a dot and 

the standard errors are shown by the error bars. In panel c and d, clustering 

performance is evaluated by AMI, NMI, and ARI. 
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3.2.3 Simulation experiments 

To test the robustness of scMDC under different scenarios, we conducted two 

simulation experiments with various clustering signals and dropout rates. We 

generate all the simulation datasets using SymSim package (v0.0.0.9) in R. 

Figures 3.4 a, b, and c show the performance of scMDC and the competing 

methods on the simulated CITE-seq data with low, medium, and high clustering 

signals, respectively. scMDC has demonstrated superior performance across all 

levels of clustering signals, especially in terms of AMI and NMI. TotalVI has 

comparable performance with scMDC in ARI, but it is outperformed by scMDC in 

other metrics.  Besides, when the clustering signal is low, scMDC shows a 

greater advantage over other methods, revealing its capability to handle datasets 

with low signal-to-noise ratios. Figures 3.4 d, e, and f show the clustering results 

of all the methods with low, medium, and high dropout rates, respectively. We 

can see that scMDC yields the optimal performance under various dropout rates, 

followed by TotalVI. We also observe that the higher the dropout rate, the larger 

improvement scMDC brings, in comparison with its competing methods. Such a 

result is compelling because most real single-cell datasets exhibit high dropout 

rates. The robust performance under high dropout events makes scMDC to be a 

superior clustering method. This result also consolidates our statement that 

scMDC is a better tool to cluster the datasets with low signal-to-noise ratios than 

the competing methods. For multi-batch data, we compare scMDC with TotalVI 

and Seurat, the only two competing methods that can correct batch effect. 

Medium dropout rate and clustering signal are used for simulating the multi-batch 
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dataset. scMDC outperforms the two competing methods in all three metrics (see 

Figure 3.4g). The differences between the performance of scMDC and each 

competing method are summarized in Figure 4h. Although the distribution of 

differences varies across different methods, all the medians of differences are 

greater than zero indicating a consistent superiority of scMDC over all the 

competing methods. Similarly, we rank all methods in analysis of these simulated 

datasets. scMDC and TotalVI constantly rank No. 1 and No. 2, respectively (see 

Figure 3.4i). Like the results in the real datasets, multi-omics methods have 

better overall performance than the single-source methods. Using one-sided 

paired t-tests done on the three raw performance metrics, we confirm that the 

improvements of scMDC over competing methods are all significant (see 

Appendix Table D.3). These simulation results demonstrate that scMDC has 

robust clustering performance under various scenarios. 
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Figure 3.4 Clustering performance of scMDC and the competing methods on the 

simulation datasets. The first simulation experiment is to test the clustering 

performance of scMDC with (a) low, (b) medium, and (c) high clustering signals. 

The second simulation experiment is to test the clustering performance of 

scMDC with (d) low, (e) medium, and (f) high dropout rates. (g) Since scMDC, 

Seurat, and TotalVI can correct the batch effect, we also test their clustering 

performance on a multi-batch simulation dataset. In panel a-f, bars stand for the 

mean values, dots stand for the data points, and error bars stand for the standard 

errors. We generate ten replicates for each experimental setting (n=10). (h) The 

differences between the averaged performance of scMDC and the competing 

methods over all simulation datasets are shown in boxplots (n=6). Each boxplot 

shows the minimum, first quartile (Q1), median, third quartile (Q3), and maximum 

of data. The minimum and maximum are Q1 - 1.5 * IQR and Q1 + 1.5 * IQR, 

respectively. Each data point (a difference of averaged performance in a dataset) 

is shown by a dot. (i) We also summarized the performance of each method by 

showing the averaged ranks (n=7). Each data point (an average rank of a 

method in a setting) is shown by a dot and the standard errors are shown by the 

error bars. In all panels, the clustering performance is evaluated by AMI, NMI, 

and ARI.  
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3.2.4 Latent representations of real data 

Figure 3.5 shows the t-SNE plots of the embedding of scMDC (a) and four 

competing methods, IDEC (b), scVIS (c), TotalVI (d), and Seurat (e), on the 

BMNC dataset. We also show the expression pattern of three marker genes in 

the t-SNE plots. They are LYZ (the first column) for CD14 monocyte cells, CD8A 

(the second column) for CD8 cells, and NKG7 (the third column) for NK cells. 

True labels (cell types) are shown in the fourth column. We find that scMDC can 

divide most cell types in the latent space. In contrast, scVIS, totalVI, and Seurat 

fail to separate many cell types, including large cell types, such as CD14 

monocyte and CD4 memory cells, which are connected or mixed with other cell 

types in the latent spaces. IDEC divides large cell types into many small clusters. 

Many of them are mixed with other cell types. It is noted that scMDC fails to 

divide some sub-cell types, such as CD8 effect 1, CD8 effect 2, CD8 memory 1, 

and CD8 memory 2, on the latent space. This problem is also observed on the t-

SNE plots of other methods. In the latent space of scMDC, the marker genes are 

only expressed in some isolated clusters. However, in the latent space of other 

methods, the marker genes are either expressed in multiple clusters or in a part 

of a huge cluster. These are all unsatisfactory expression patterns. Similar 

results are observed in the expression pattern of ADT markers (see Appendix 

Figure A.1). We then build t-SNE plots of the embeddings of a multi-batch 

dataset SLN111 with two batches of data (see Figure 3.6). This dataset contains 

35 cell types including some large ones (>1000 cells, such as CD4 and CD8 T 

cells) and tiny ones (<100 cells, such as erythrocytes and plasmacytoid dendritic 
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cells - pDCs). An ideal model should be capable of 1) dividing different cell types 

on the latent space, and 2) removing batch effect and mixing the cells from 

different batches on the latent space. In other words, biological variations should 

be captured while technical variations are omitted during the embedding learning. 

Figure 3.6 shows the latent representations of (a) scMDC and four competing 

methods including (b) IDEC, (c) scVIS, (d) TotalVI, and (e) Seurat. We find that 

scMDC can separate most cell types in the latent space. In addition, it mixes the 

cells from two batches in most clusters. IDEC can separate the large cell types 

but fails to divide the small cell types. scVIS, TotalVI, and Seurat show inferior 

performance in dividing different cell types in the latent space. Like scMDC, 

TotalVI and Seurat also have satisfactory performance on batch effect correction. 

scVIS and IDEC cannot address batch effect, so the cells from two batches are 

totally separated on the latent space. In summary, scMDC is the only method 

that has superior performance on both cell type partition and batch effect removal. 

Similar results can be found on the t-SNE plots of the multi-batch SMAGE-seq 

dataset (PBMC13K, see Appendix Figure A.2).  



32 

 

Figure 3.5 Low-dimension representation of scMDC and the competing methods 

on the BMNC dataset. The t-SNE plots of the embeddings from (a) scMDC and 

four competing methods including (b) IDEC, (c) scVIS, (d) TotalVI, and (e) Seurat 

are shown in different rows. The first three columns show the expression pattern 

of genes LYZ, CD8A, and NKG7. The last column shows the true labels (cell 

types) on the latent space of each method. 
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Figure 3.6 Low-dimension representation of scMDC and the competing methods 

on the SLN111 dataset. The t-SNE plots of the embeddings from (a) scMDC and 

four competing methods including (b) IDEC, (c) scVIS, (d) TotalVI, and (e) Seurat 

are shown in different rows. The three columns show the predicted labels, the 

batch IDs, and the true labels on the latent space of each method. 
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3.2.5 The advantage of using multimodal data 

As described in the introduction, different omics of data provide different and 

complementary information for cell clustering and cell typing. Therefore, using 

multi-omics data in clustering should be able to achieve better performance than 

using single-source data. In this experiment, we conducted two tests. In the first 

test, we compare the performance of scMDC with two variant models: a sub-

model of scMDC with only mRNA input and reconstruction loss (named scMDC-

RNA) and another sub-model of scMDC with only ADT/ATAC input and 

reconstruction loss (named scMDC-ADT/scMDC-ATAC). We also compare 

scMDC to a model with concatenated mRNA and ADT data as input but with only 

one reconstruction loss (named scMDC-Concat). Figures 3.7 a and b show the 

performance of scMDC and three variant models in CITE-seq and SMAGE-seq 

data, respectively. We find that scMDC outperforms the variant models in all the 

datasets. For CITE-seq data, scMDC-ADT has the second-best performance in 

all datasets. This is consistent with our expectation because most ADTs are 

strong markers for identifying some cell types. On the other hand, scMDC-ATAC 

has inferior performance in two SMAGE-seq datasets. The differences between 

the performance of scMDC and each variant model are summarized in Figure 

3.7c. We find a stable advantage of scMDC over all the variant models. Using 

one-sided paired t-test, we find that scMDC significantly outperforms most variant 

models for both CITE-seq and SMAGE-seq data (see Appendix Table D.4). The 

only exception is the scMDC-ATAC model (P-value = 0.07), because of the low 

sample size of SMAGE-seq data (n=4). Considering that the sub-models of 
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scMDC are not optimized for clustering scRNA-seq data, we compare scMDC 

with scDeepCluster, a state-of-art tool for clustering scRNA-seq data. It is noted 

that scMDC uses multi-omics data as input (either mRNA + ADT or mRNA + 

ATAC), while scDeepCluster only uses mRNA-seq data as input. We find that 

scMDC outperforms scDeepCluster in all datasets (see Figures 3.7d and e), 

indicating that scMDC can integrate the information from multimodal data to 

boost clustering performance.  We also build the t-SNE plots of the embeddings 

from scMDC and three variant models (see Appendix Figure A.3). 

Consolidating our expectations in the introduction, scMDC-RNA correctly 

separates some tiny cell types but falsely combines some large cell types. In 

constrast, scMDC-ADT separates most large cell types but fails to detect some 

small cell types. scMDC-Concat exhibits similar performance as scMDC-RNA, 

which suggests a predominant role of mRNA data in the concatenate input. The 

t-SNE plots of SMAGE-seq data (PBMC13K) from scMDC and three variant 

models are shown in Appendix Figure A.4. scMDC also outperforms the variant 

models in cell type partition on the latent space. In addition, we compare the 

single-modal scMDC (scMDC-RNA and scMDC-ADT/scMDC-ATAC) to other 

single-modal methods (see Appendix Figures B.1-8). We find that in most 

datasets, the single-modal scMDC models also have the best or close-to-best 

performance. Based on these single-modal methods, the multimodal scMDC 

further boosts the clustering performance by integrating the information from two 

omics of data. 
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Figure 3.7 Clustering performance of scMDC and the variant models on the 

multimodal datasets. (a) scMDC, scMDC-RNA, scMDC-ADT, and scMDC-Concat 

are tested on the CITE-seq data (n=9) and (b) scMDC, scMDC-RNA, scMDC-

ATAC, and scMDC-Concat are tested on the SMAGE-seq data (n=4). In panel a 

and b, clustering performance is illustrated in a two-dimensional manner with ARI 

as the Y axis and NMI as the X axis. Circles stand for the results of multi-batch 

datasets and triangles stand for the results of single-batch dataset. (c) The 

differences between the performance of scMDC and the competing methods in 

CITE-seq data (left, n=9) and SMAGE-seq data (right, n=4) are shown in 

boxplots. (d) The comparisons between scMDC and scDeepCluster are shown in 

dots (n=13). The paired performance for each dataset from two methods are 

connected by lines. (e) The differences between the performance of scMDC and 

the scDeepCluster are shown in boxplots and violin plots (n=13). 
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3.2.6 Downstream analysis 

Based on the clustering results, we perform two popular downstream analyses, 

differential expression (DE) analysis and gene set enrichment analysis (GSEA). 

We employ the algorithm from ACE (Lu et al., 2021) which ranks genes based on 

the confidence of them to be assigned to this cluster. The DE analysis can be 

performed between two clusters or between one cluster and the rest of the 

clusters. Then, we calculate the log-fold change of each gene to get the 

directions of differential expression (namely upregulation or downregulation) 

based on the normalized mRNA counts. With gene ranks and directions, we 

perform GSEA to find the enriched pathways in the target clusters. Here, we 

show the results of the BMNC dataset (Figure 3.8). We conduct DE and GSEA 

for the four largest clusters in the BMNC data. All comparisons are performed 

between the target cluster and the rest of the clusters. Figure 3.8a shows the DE 

genes for CD14 monocyte, CD4 memory T cells, CD4 naive T cells, and CD8 

naive T cells. We find many proven marker genes for each cell type. For example, 

LYZ, CST3, HLA-DRA, CD74, and CD14 have been shown highly expressed in 

the monocyte cells (Schlachetzki et al., 2018).  CD27 and CCR7 are the marker 

gene for naive cells (Caccamo, Joosten, Ottenhoff, & Dieli, 2018). They are in the 

top ranks in both CD4 naive and CD8 naive clusters. IL7R and S100A4 have 

been demonstrated to be highly expressed in memory T cells (Harding et al., 

2018). Figure 3.8b shows the GSEA results of the Hallmark pathways based on 

the DE analysis. Hierarchical clustering is performed on both pathways and cell 
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clusters. We find that two naive cell types are clustered together and have many 

common enriched pathways. The MYC targets are enriched in CD4 naive, CD4 

memory, and CD8 naive clusters. Their important functions in CD4 and CD8 T 

cells have been demonstrated by Marchingo et al.(Marchingo, Sinclair, Howden, 

& Cantrell, 2020) The complement system has the highest enrichment score in 

CD14 monocytes. It is an essential pathway for the phagocytosis of 

mesenchymal stromal cells by monocytes (Gavin et al., 2019). The hypoxia 

pathway is enriched in the CD4 memory T cells. It has been widely shown that 

hypoxia has a significant influence on the metabolism and differentiation of 

memory CD4 T cells(Cho et al., 2019; Dimeloe et al., 2016; Hasan, Chiu, Shaw, 

Wang, & Yee, 2021). IL2 signaling is enriched in CD4 memory T cells. Its 

dynamic roles in CD4 T cells have been demonstrated in the previous 

studies(Jones, Read, & Oestreich, 2020; Ross & Cantrell, 2018). The enrichment 

plots of the significant Hallmark pathways are shown in Appendix Figures C.1-4. 

These downstream analyses further consolidate the correctness of the clustering 

results of scMDC. 



39 

 

Figure 3.8 Downstream analyses of scMDC in BMNC dataset. (a) Differential 

expression analysis and (b) Hallmark gene set enrichment analysis are 

conducted for four large cell clusters in the BMNC dataset based on the 

clustering result of scMDC. In panel a, dot size shows the percentage of a gene 

expressed in a cell type and colors show the average expression of a gene in a 

cell type with blue as low and red as high. 

 

3.2.7 Hyperparameter tuning and time complexity 

scMDC has two key hyperparameters 𝜑 (Phi) and 𝛾 (Gamma) that control the KL 

loss and clustering loss, respectively. Figures 3.9a and b show the clustering 

performance of scMDC on both CITE-seq and SMAGE-seq datasets with various 

𝜑 and 𝛾, respectively. We find that when 𝜑 is lower than 0.01 and 𝛾 is lower than 
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10, scMDC is insensitive to these parameters. When 𝜑 goes beyond 0.01 and 𝛾 

goes beyond 10, scMDC’s performance drops dramatically. It is noted that the 

clustering loss has a clear contribution to the performance of most datasets 

(P<0.05 from one-sided paired t-test between 𝛾 = 0.1 and 𝛾 = 0). On the other 

hand, the KL loss contributes slightly to the performance of some CITE-seq data 

but boosts the performance of SMAGE-seq data, especially in ARI. The statistical 

tests of the hyperparameter tuning results are listed in Appendix Table D.5. 

To test the running time of scMDC, we simulate datasets with cell 

numbers ranging from 1000 to 100,000. Figure 3.9c shows the running time of 

scMDC with ascending cell numbers. We find a linear relationship between the 

cell numbers and the running time of scMDC. When the cell number is ten 

thousand, scMDC only needs about 7 minutes to finish the clustering analysis. 

Even when the cell number is as large as a hundred thousand, scMDC just takes 

about 1 hour to finish the clustering analysis. All results are obtained on the 

Nvidia Tesla P100 with 16Gb memory. 
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Figure 3.9 Hyperparameter tuning and running time testing of scMDC. This 

experiment is conducted on six real datasets (n=6). (a) Phi and (b) Gamma are 

set ranging from 0 to 1 and 0 to 100, respectively. (c) We test the running time of 

scMDC by increasing the cell numbers in the simulated datasets from 1000 to 

100000 (n=7).  

 

3.3 Discussion 

We have introduced scMDC - a multimodal deep clustering method for clustering 

analysis of different single-cell multi-omics data. scMDC jointly models both 

mRNA and ADT/ATAC data by employing a multimodal autoencoder. Deep K-

means clustering is conducted on the bottleneck of the autoencoder, and a KL-

loss is employed to facilitate separating distinct cell groups. scMDC is an end-to-

end deep model, and all components are optimized simultaneously. Current 

existing clustering methods for CITE-seq data either apply a shallow Bayes 

model, such as BREM-SC, or combine two distance-based graphs of mRNA and 
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ADT, such as CiteFuse and Seurat, to leverage information from different data 

sources. These methods do not explicitly model dropout events and 

overdispersions in mRNA and/or ADT count data. Our real-data results 

demonstrate that the multimodal-based deep learning approach can characterize 

different sources of count data of CITE-seq and SMAGE-seq more effectively 

and efficiently.  

The clustering results are essential for the downstream analyses, such as 

differential expression and gene set enrichment analysis. We employ a deep 

learning-based differential expression algorithm (Lu et al., 2021) to rank genes in 

a target cluster based on their confidence of being assigned to the target cluster. 

Given the ranked list of genes, GSEA can be performed to profile cell types at a 

functional level. The advantages of this deep differential expression method over 

the traditional methods, such as Wilcoxon-test and DEseq2 (Love, Huber, & 

Anders, 2014), have been demonstrated by Lu et al (Lu et al., 2021). With the 

acceleration of GPU, scMDC is very efficient for large multi-omics datasets. 

Taking all results together, we conclude that scMDC is a promising method for 

the clustering analysis of single-cell multi-omics data. 

 

3.4 Methods and Materials 

3.4.1 Count data preprocessing 

The raw CITE-seq data is preprocessed and normalized by the Python package 

SCANPY (Wolf, Angerer, & Theis, 2018). mRNA and ADT data are normalized 

separately but using the same method. Specifically, the genes and ADTs with no 
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count are filtered out. The counts of a cell are normalized by a size factor 𝑠𝑖 

(specifically, 𝑠𝑖
𝑝

 for ADT data and 𝑠𝑖
𝑟 for mRNA data), which is calculated as 

dividing the library size of that cell by the median of the library size of all cells. In 

this way, all cells will have the same library size and become comparable. Finally, 

the counts are transformed into logarithms and scaled to have unit variance and 

zero mean. The treated count data of mRNA and ADT are used in our denoising 

multi-modal autoencoder model. We use the raw count matrix to calculate the 

ZINB loss (Eraslan et al., 2019; Lopez et al., 2018). Before processing the 

Single-cell Multiome ATAC Gene Expression (SMAGE-seq) data, we map all the 

reads from scATAC-seq to the gene regions (see details below). Then we use 

the same methods to preprocess and normalize SMAGE-seq data as for CITE-

seq data. The size factor 𝑠𝑖
𝑎 for ATAC data is also calculated. 

3.4.2 Denoising hierarchical multi-modal autoencoder 

The autoencoder is a neural network that is able to learn nonlinear 

representations efficiently (Hinton & Salakhutdinov, 2006). There are various 

types of autoencoder models. The denoising autoencoder receives corrupted 

data with artificial noises and reconstructs the original data (Vincent, Larochelle, 

Bengio, & Manzagol, 2008). It is widely used for noisy datasets to learn robust 

latent representation. We use the denoising autoencoder for the mRNA, ADT, 

and ATAC data since they are very noisy. Let’s denote the preprocessed counts 

of mRNA, ADT, and ATAC as  𝐗𝐫, 𝐗𝐩, and  𝐗𝐚 and the corrupted mRNA, ADT and 

ATAC data as 𝐗𝐜
𝐫, 𝐗𝐜

𝐩
, and 𝐗𝐜

𝐚, formally: 
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𝐗𝐜
𝐫 = 𝐗𝐫 + 𝜎𝑟 ∗ 𝐧𝐫      (3.1) 

𝐗𝐜
𝐩
= 𝐗𝐩 + 𝜎𝑃 ∗ 𝐧𝐩     (3.2) 

𝐗𝐜
𝐚 = 𝐗𝐚 + 𝜎𝑎 ∗ 𝐧𝐚     (3.3) 

where  𝐧𝐫 , 𝐧𝐩  and 𝐧𝐚  are the artificial gaussian noise (with mean=0 and 

variance=1) for mRNA, ADT and ATAC data respectively, and 𝜎𝑟 , 𝜎𝑝 , and 𝜎𝑎 

controls the weights of 𝑛𝑟, 𝑛𝑝 and 𝑛𝑎. We set 𝜎𝑟 and 𝜎𝑎 as 2.5 and 𝜎𝑝 as 1.5. 

Next, ADT/ATAC and mRNA data are reduced to latent spaces by an 

autoencoder model. Our autoencoder model contains one encoder (E) for the 

concatenated data and two decoders (D) for different omics of data. Both the 

encoder and decoders are multi-layered fully connected neural networks. We 

denote encoder 𝐙 =  𝐸𝐰(𝐗𝐜
𝐫⊙𝐗𝐜

𝐩
)  for the concatenated  mRNA and ADT data, 

encoder 𝐙 =  𝐸𝐰(𝐗𝐜
𝐫⊙𝐗𝐜

𝐚)  for the concatenated mRNA and ATAC data, and 

decoder  𝐗𝐚′  =  𝐷𝐰𝐚′
𝑎 (𝐙𝐚) for ATAC data, decoder  𝐗𝐩′  =  𝐷𝐰𝐩′

𝑝
(𝐙𝐩) for ADT data, 

and decoder  𝐗𝐫′ = 𝐷𝐰𝐫′
𝑟 (𝐙𝐫) for mRNA data. 𝐰 and 𝐰′  stand for the learnable 

weights of the encoder end decoders, respectively. ⊙  indicates the 

concatenation of two matrices. The ELu activation function (Clevert, Unterthiner, 

& Hochreiter, 2015) is used for all the hidden layers in the encoder and decoders 

and batch normalization is performed on the output of all the hidden layers. The 

reconstruction loss functions of our autoencoder model are: 

𝐿𝐴𝐷𝑇 = 𝐿( 𝐗
𝐩, 𝐷

𝐰𝐩
′

𝑝
(𝐸𝐰(𝐗𝐜

𝐜𝐨𝐧)))    (3.4) 
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𝐿𝐴𝑇𝐴𝐶 = 𝐿( 𝐗
𝐚, 𝐷𝐰𝐚′

𝑎 (𝐸𝐰(𝐗𝐜
𝐜𝐨𝐧)))    (3.5) 

𝐿𝑚𝑅𝑁𝐴 = 𝐿( 𝐗𝐫, 𝐷𝐰𝐫′
𝑟 (𝐸𝐰(𝐗𝐜

𝐜𝐨𝐧)))    (3.6) 

where 𝐗𝐜
𝐜𝐨𝐧 stands for the concatenated data from either mRNA + ADT or mRNA 

+ ATAC. For all the omics of data, we employ the zero-inflated negative binomial 

(ZINB) models as the reconstruction loss function (Tian et al., 2019). Note, the 

raw count data is used in the ZINB models (Eraslan et al., 2019; Lopez et al., 

2018; Tian et al., 2019). Let 𝑋𝑖𝑗
𝑝

 be the count for cell i and protein j in the raw 

count matrix of ADT, 𝑋𝑖𝑗
𝑎  be the count for cell i and gene j in the raw count matrix 

of ATAC, and 𝑋𝑖𝑗
𝑟  be the count for cell i and gene j in the raw count matrix of 

mRNA. The NB distributions are parameterized by means 𝜇𝑖𝑗
𝑝

, 𝜇𝑖𝑗
𝑎 and 𝜇𝑖𝑗

𝑟 , 

dispersions 𝜃𝑖𝑗
𝑝
, 𝜃𝑖𝑗

𝑎  and 𝜃𝑖𝑗
𝑟  , for ADT, ATAC and mRNA respectively. Formally: 

𝑁𝐵(𝑋𝑖𝑗
𝑝 |𝜇𝑖𝑗

𝑝 , 𝜃𝑖𝑗
𝑝) =

Γ(𝑋𝑖𝑗
𝑝
+𝜃𝑖𝑗

𝑝
)

𝑋
𝑖𝑗
𝑝
!Γ(𝜃

𝑖𝑗
𝑝
)
(

𝜃𝑖𝑗
𝑝

𝜃
𝑖𝑗
𝑝
+𝜇

𝑖𝑗
𝑝)

𝜃𝑖𝑗
𝑝

(
𝜃𝑖𝑗
𝑝

𝜃
𝑖𝑗
𝑝
+𝜇

𝑖𝑗
𝑝)

𝑋𝑖𝑗
𝑝

  (3.7) 

𝑁𝐵(𝑋𝑖𝑗
𝑎 |𝜇𝑖𝑗

𝑎 , 𝜃𝑖𝑗
𝑎) =

Γ(𝑋𝑖𝑗
𝑎+𝜃𝑖𝑗

𝑎)

𝑋𝑖𝑗
𝑎!Γ(𝜃𝑖𝑗

𝑎)
(

𝜃𝑖𝑗
𝑎

𝜃𝑖𝑗
𝑎+𝜇𝑖𝑗

𝑎)
𝜃𝑖𝑗
𝑎

(
𝜃𝑖𝑗
𝑎

𝜃𝑖𝑗
𝑎+𝜇𝑖𝑗

𝑎)
𝑋𝑖𝑗
𝑎

   (3.8) 

𝑁𝐵(𝑋𝑖𝑗
𝑟 |𝜇𝑖𝑗

𝑟 , 𝜃𝑖𝑗
𝑟 ) =

Γ(𝑋𝑖𝑗
𝑟+𝜃𝑖𝑗

𝑟 )

𝑋𝑖𝑗
𝑟 !Γ(𝜃𝑖𝑗

𝑟 )
(

𝜃𝑖𝑗
𝑟

𝜃𝑖𝑗
𝑟+𝜇𝑖𝑗

𝑟 )
𝜃𝑖𝑗
𝑟

(
𝜃𝑖𝑗
𝑟

𝜃𝑖𝑗
𝑟+𝜇𝑖𝑗

𝑟 )
𝑋𝑖𝑗
𝑟

   (3.9) 

ZINB distribution is parameterized by the negative binomial of count data 

and an additional coefficient 𝜋𝑖𝑗
𝑝

, 𝜋𝑖𝑗
𝑎  and 𝜋𝑖𝑗

𝑟  for the probabilities of dropout events: 

𝑍𝐼𝑁𝐵(𝑋𝑖𝑗
𝑝 |𝜇𝑖𝑗

𝑝 , 𝜃𝑖𝑗
𝑝 , 𝜋𝑖𝑗

𝑝 ) = 𝜋𝑖𝑗
𝑝𝛿0(𝑋𝑖𝑗

𝑝) + (1 − 𝜋𝑖𝑗
𝑝 )𝑁𝐵(𝑋𝑖𝑗

𝑝 |𝜇𝑖𝑗
𝑝 , 𝜃𝑖𝑗

𝑝)  (3.10) 
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𝑍𝐼𝑁𝐵(𝑋𝑖𝑗
𝑎 |𝜇𝑖𝑗

𝑎 , 𝜃𝑖𝑗
𝑎 , 𝜋𝑖𝑗

𝑎 ) = 𝜋𝑖𝑗
𝑎𝛿0(𝑋𝑖𝑗

𝑎) + (1 − 𝜋𝑖𝑗
𝑎 )𝑁𝐵(𝑋𝑖𝑗

𝑎 |𝜇𝑖𝑗
𝑎 , 𝜃𝑖𝑗

𝑎 )   (3.11) 

𝑍𝐼𝑁𝐵(𝑋𝑖𝑗
𝑟 |𝜇𝑖𝑗

𝑟 , 𝜃𝑖𝑗
𝑟 , 𝜋𝑖𝑗

𝑟 ) = 𝜋𝑖𝑗
𝑟 𝛿0(𝑋𝑖𝑗

𝑟 ) + (1 − 𝜋𝑖𝑗
𝑟 )𝑁𝐵(𝑋𝑖𝑗

𝑟 |𝜇𝑖𝑗
𝑟 , 𝜃𝑖𝑗

𝑟 )   (3.12) 

To estimate these parameters in the ZINB loss functions, we add three 

independent fully connected layers 𝐌, 𝛉, and 𝚷 to the last hidden layer of each 

decoder. The layers are defined as: 

𝐌𝐀𝐃𝐓 = 𝑑𝑖𝑎𝑔(𝑠𝑖
𝑝)  ×  exp (𝐰𝐩(𝛍)𝐗

𝐩′);  𝚯𝐀𝐃𝐓 = exp (𝐰𝐩(𝛉)𝐗
𝐩′);   

𝚷𝑨𝑫𝑻 = exp (𝐰𝐩(𝛑)𝐗
𝐩′)   (3.13) 

𝐌𝐀𝐓𝐀𝐂 = 𝑑𝑖𝑎𝑔(𝑠𝑖
𝑎)  ×  exp (𝐰𝐚(𝛍)𝐗

𝐚′); 𝛉𝐀𝐓𝐀𝐂 = exp (𝐰𝐚(𝛉)𝐗
𝐚′)    

 𝚷𝑨𝑻𝑨𝑪 = exp (𝐰𝐚(𝛑)𝐗
𝐚′)    (3.14) 

𝐌𝐑𝐍𝐀 = 𝑑𝑖𝑎𝑔(𝑠𝑖
𝑟)  ×  exp (𝐰𝐫(𝛍)𝐗

𝐫′); 𝛉𝐑𝐍𝐀 = exp (𝐰𝐫(𝛉)𝐗
𝐫′)   

𝚷𝑹𝑵𝑨 = exp (𝐰𝐫(𝛑)𝐗
𝐫′)   (3.15) 

where 𝐌𝐀𝐃𝐓, 𝛉𝐀𝐃𝐓 and 𝚷𝐀𝐃𝐓 are the matrices of estimated mean, dispersion and 

drop-out probability for the ZINB loss of ADT data, 𝐌𝐀𝐓𝐀𝐂, 𝛉𝐀𝐓𝐀𝐂 and 𝚷𝐀𝐓𝐀𝐂 are 

the matrices of estimated mean, dispersion and drop-out probability for the ZINB 

loss of ATAC data, and 𝐌𝐑𝐍𝐀, 𝛉𝐑𝐍𝐀 and 𝚷𝐑𝐍𝐀 are the matrices of estimated mean, 

dispersion, and drop-out probability for the ZINB loss of mRNA data. 𝐰𝐩(𝛍), 𝐰𝐩(𝛉), 

𝐰𝐩(𝛑), 𝐰𝐚(𝛍), 𝐰𝐚(𝛉), 𝐰𝐚(𝛑), 𝐰𝐫(𝛍), 𝐰𝐫(𝛉) and 𝐰𝐫(𝛑) are the learnable weights. The size 

factor 𝑠𝑖
𝑝

, 𝑠𝑖
𝑎  and 𝑠𝑖

𝑟  for ADT, ATAC and mRNA are calculated in the 

preprocessing step. The loss function of ZINB-based autoencoder is defined as: 
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𝐿𝐴𝐷𝑇 = ∑ −log (𝑍𝐼𝑁𝐵(𝑋𝑖𝑗
𝑝
|𝜇𝑖𝑗
𝑝
, 𝜃𝑖𝑗

𝑝
, 𝜋𝑖𝑗

𝑝
))𝑖𝑗    (3.16) 

𝐿𝐴𝑇𝐴𝐶 = ∑ −log (𝑍𝐼𝑁𝐵(𝑋𝑖𝑗
𝑎 |𝜇𝑖𝑗

𝑎 , 𝜃𝑖𝑗
𝑎 , 𝜋𝑖𝑗

𝑎 ))𝑖𝑗    (3.17) 

𝐿𝑚𝑅𝑁𝐴 = ∑ −log (𝑍𝐼𝑁𝐵(𝑋𝑖𝑗
𝑟 |𝜇𝑖𝑗

𝑟 , 𝜃𝑖𝑗
𝑟 , 𝜋𝑖𝑗

𝑟 ))𝑖𝑗    (3.18) 

for ADT, ATAC and mRNA data. 

3.4.3 Conditional autoencoder 

Conditional autoencoder (CAE) has been designed to integrate the data from 

different batches (Gayoso et al., 2021). Based on the traditional autoencoder 

model, we add a matrix B on the input of the encoder and decoders. B is the 

one-hot coding from a batch vector b of cells. If there are M batches in b, the 

dimension of B would be 𝑁 ×𝑀 . So, the encoder becomes 𝐙 = 𝐸𝐰(𝐗𝐜
𝐜𝐨𝐧⊙

𝐁) and the decoders become  𝐗𝐩′  =  𝐷𝐰𝒑′
𝑝
(𝐙⊙ 𝐁) for ADT,  𝐗𝐚′  =  𝐷𝐰𝒂′

𝑎 (𝐙⊙ 𝐁) for 

ATAC , and  𝐗𝐫′ = 𝐷𝐰𝒓′
𝑟 (𝐙⊙ 𝐁) for mRNA data. 

3.4.4 Model architecture 

Our model can be used for clustering CITE-seq data and SMAGE-seq data. For 

CITE-seq data, the encoder is set as {256, 64, 32, 16}, the decoder for mRNA is 

set as {16, 64, 256} and the decoder for ADT is set as {16 20}. For SMAGE-seq 

data, the encoder is set as {256, 128, 64} and the decoders for both mRNA and 

ATAC data are set as {64, 128, 256}. So, the latent space of CITE-seq and 

SMAGE-seq data has 16 and 64 dimensions respectively. The overall 

architecture of the scMDC model is shown in Figure 3.1.  
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3.4.5 KL divergence on the latent layer 

In the clustering analysis, similar points should be grouped into the same cluster. 

According to the method described by Chen et al. (L. Chen et al., 2020), we 

employ a KL divergence loss function to enhance the association between similar 

cells and prevent squeezing the centroids of clusters in the latent space. 

Following t-SNE (Maaten & Hinton, 2008), the t-distribution kernel function is 

used to describe the pairwise similarity among two cells i and i’ in latent space of 

the high-level autoencoder: 

𝑞𝑖𝑖′ =
(1+||𝐙𝐢−𝐙𝐢′)||

2)−1

∑ (1+||𝐙𝐢−𝐙𝐥)||
2)−1𝑙≠𝑖

    (3.19) 

where 𝑞𝑖𝑖 = 0. The P is the target distribution in training, which strengthens and 

weakens the affinities between the cells with high and low similarities, 

respectively. P is defined as the square of Q then normalized: 

𝑝𝑖𝑖′ =
𝑞𝑖𝑖′
2 /∑ 𝑞𝑖𝑖′𝑖≠𝑖′

∑ (𝑞𝑖𝑙
2/∑ 𝑞𝑖𝑙𝑖≠𝑙 )𝑙≠𝑖

     (3.20) 

With the two similarity distributions, we construct the KL loss function by 

the Kullback-Leibler (KL) divergence between Q and the derived target 

distribution P: 

𝐿𝑘𝑙 = 𝐾𝐿(𝐏 ∥ 𝐐) =  ∑ ∑ 𝑝𝑖𝑗 log
𝑝𝑖𝑗

𝑞𝑖𝑗
𝑗𝑖     (3.21) 

which measure the probability-distance between the two distributions. During the 

training process, 𝐏 and 𝐐 are calculated per batch. 
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3.4.6 Deep K-means clustering 

We perform unsupervised clustering on the latent space of the autoencoder (L. 

Chen et al., 2020). Our multimodal autoencoder learns a non-linear mapping for 

each cell i, which transfers two input matrices to a low dimensional space Z. The 

clustering loss function is defined as: 

𝐿𝑐 = ∑ ∑ 𝑤𝑖𝑗𝜏𝑓(𝐙𝐢, 𝑉𝑗)
𝐾
𝑗=1

𝑁
𝑖=1     (3.22) 

where 𝐕  stands for the K clustering centroids and 𝑓  calculates the Euclidean 

distance between a cell (in latent space) and a centroid. 𝜏 is a hyperparameter. 

We set 𝜏 as 1 for CITE-seq data and 0.1 for SMAGE-seq data. The Gaussian 

kernel function is applied in weight measuring to smooth the gradient descent 

optimization process: 

�̃�𝑖𝑗 =
exp (−𝑓(𝐙𝐢,𝑉𝑗))

∑ exp (−𝑓(𝐙𝐢,𝑉𝑘))
𝐾
𝑘=1

    (3.23) 

Then, to speed up the convergence, an inflation operation is applied on 

the weights: 

𝑤𝑖𝑗 =
�̃�𝑖𝑗
𝛼

∑ �̃�𝑖𝑘
𝛼𝐾=1

𝑘

     (3.24) 

where the hyperparameter 𝛼 is set to 2. 

The total loss of scMDC is defined as: 

argmin
𝐰,𝐰𝒑

′ ,𝐰𝒓
′,𝐔

𝐿𝑡𝑜𝑡𝑎𝑙(𝐗
𝐩, 𝐗𝐫|𝐰,𝐰𝒑

′ , 𝐰𝒓
′ , 𝐔) = 𝐿𝑚𝑅𝑁𝐴(𝐗

𝐫|𝐰,𝐰𝒓
′) + 𝐿𝐴𝐷𝑇(𝐗

𝐩|𝐰,𝐰𝒑
′ ) + 𝛾 ∗

𝐿𝑐(𝐗
𝐫, 𝐗𝐩|𝐰, , 𝐔) + 𝜑 ∗ 𝐿𝑘𝑙(𝐗

𝐫, 𝐗𝐩|𝐰)    (3.25) 
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for CITE-seq data, and 

argmin
𝐰,𝐰𝒂

′ ,𝐰𝒓
′,𝑈

𝐿𝑡𝑜𝑡𝑎𝑙(𝐗
𝐚, 𝐗𝐫|𝐰,𝐰𝒂

′ , 𝐰𝒓
′ , 𝐔) = 𝐿𝑚𝑅𝑁𝐴(𝑿

𝒓|𝐰,𝐰𝒓
′) + 𝐿𝐴𝑇𝐴𝐶(𝐗

𝐚|𝐰,𝐰𝒂
′ ) + 𝛾 ∗

𝐿𝑐(𝐗
𝐫, 𝐗𝐚|𝐰,𝐔) + 𝜑 ∗ 𝐿𝑘𝑙(𝐗

𝐫, 𝐗𝐚|𝐰)    (3.26) 

for SMAGE-seq data. 𝐰 is the weight matrix of the encoder. 𝐰𝒂
′ , 𝐰𝒑

′ , 𝑎𝑛𝑑 𝐰𝒓
′are 

the weights of mRNA decoder, ADT decoder and ATAC decoder, respectively. 𝐔 

is a set of centroids. Here, 𝛾 and 𝜑 are the hyper-parameters that control weights 

for the clustering loss and the KL loss, respectively. Value of 𝛾 is set as 0.1 for all 

experiments.  𝜑 is set to 0.001 for CITE-seq data and 0.005 for SMAGE-seq data. 

3.4.7 Marker gene detection 

We employ an approach proposed by Lu et al. (Lu et al., 2021) to find marker 

genes in each cluster against another cluster or the rest of the clusters. Briefly, 

for each gene, this algorithm will find the minimal perturbation that alters the 

group assignment from a source group (s) to the target group(s) (t). The objective 

function for one-to-one comparison is: 

min
𝛿
∥ 𝛿 ∥ +  𝜆max (0, 𝛼 + 𝑚𝑠(𝐱 + 𝛿) − 𝑚𝑡(𝐱 + 𝛿)) (3.27) 

where the tradeoff coefficient 𝜆  and the margin 𝛼  are set to 100 and 1, 

respectively. 𝐱 ∈ 𝐗 is the normalized data of a cell. 𝛿 ∈ ℝ𝑃 is the perturbation for 

altering the cluster assignment of cells. L1 norm of 𝛿  is used to encourage 

sparsity and non-redundancy. The objective function for one-to-rest comparison 

is: 
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min
𝛿
∥ 𝛿 ∥ +  𝜆max (0, 𝛼 + 𝑚𝑠(𝐱 + 𝛿) − max

𝑡≠𝑠
𝑚𝑡(𝐱 + 𝛿))  (3.28) 

It is equal to comparing a source cluster to a target cluster for which cell x 

has the highest confidence. The confidence from a cell x to a cluster c is defined 

as: 

𝑚𝑐(𝐱) = log (
exp (−𝛽∥𝐸𝐰(𝐱)−𝜇𝑐∥)

∑ exp (−𝛽∥𝐸𝐰(𝐱)−𝜇𝑘∥)𝑘
)    (3.29) 

where 𝜇𝑐 is the centroid of cluster c and 𝛽 is set to 1. Besides the mRNA matrix, 

this algorithm can also be applied to ADT and ATAC matrix. The gene rank 

learned from ACE is then multiply by a direction vector to get the directed gene 

rank. The direction vector of genes is calculated based on the log fold change 

between clusters by changing positive values to 1 and negative values to -1. 

Based on the directed gene rank, gene set enrichment analysis (GSEA) is 

performed by the package fgsea (v1.19.4) and msigdbr (v7.4.1) in R.  

3.4.8 Model implementation 

The model is implemented in Python3 using PyTorch (Paszke et al., 2017). 

Adam with AMSGrad variant (Kingma & Ba, 2014; Reddi, Kale, & Kumar, 2018) 

with initial learning rate = 0.001 is used for the pretraining stage. We Adadelta 

optimizer(Zeiler, 2012) with learning rate = 1 and rho = 0.95 is used in the 

clustering stage. The batch size is set as 256. We pretrain the autoencoders for 

400 epochs before entering the clustering stage. In the pretraining stage, we 

optimize the reconstruction losses in the first 200 epochs. The KL loss (𝐿𝑘𝑙) on 

the bottleneck layer is added to the training in the remaining 200 epochs. After 
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pretraining, the users need to specify the number of clusters (K). In the beginning 

of clustering stage, we initialize K centroids by k-means algorithm. During the 

clustering stage, all loss functions including clustering loss (𝐿𝑐 ) are optimized 

simultaneously, and the centroids are also continuously updated by the learning 

process. The convergence threshold for the clustering stage is that clustering 

labels are changed less than 0.1% per epoch. All experiments of scMDC in this 

study are conducted on Nvidia Tesla P100 (16G) GPU.  

3.4.9 Competing methods 

BREM-SC (v0.2.0, https://github.com/tarot0410/BREMSC) (X. Wang et al., 2020), 

CiteFuse  (v1.0.0, https://github.com/SydneyBioX/CiteFuse) (Kim et al., 2020), 

Seurat (v4.0.4, https://github.com/satijalab/seurat) (Butler et al., 2018), IDEC 

(https://github.com/XifengGuo/IDEC) (Xie et al., 2016), k-means (sklearn v0.22.2, 

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html), 

SC3 (v1.21.0, https://github.com/hemberg-lab/SC3) (Kiselev et al., 2017), SCVIS 

(v0.1.0, https://github.com/shahcompbio/scvis) (Ding, Condon, & Shah, 2018), 

Tscan (v1.31.0, https://github.com/zji90/TSCAN) (Ji & Ji, 2016) , TotalVI (scvi-

tools v0.15.0, https://scvi-tools.org/), Cobolt (v1.0.0, 

https://github.com/epurdom/cobolt) (Gong et al., 2021), scMM (v1.0.0, 

https://github.com/kodaim1115/scMM)(Minoura et al., 2021) and Specter 

(https://github.com/canzarlab/Specter) (Ringeling & Canzar, 2021) are used as 

competing methods. For the multimodal methods, ADT/ATAC and mRNA data 

are used as input, and standard normalization is applied if authors described. For 

single data source methods, ADT/ATAC and mRNA matrices are preprocessed 

https://github.com/tarot0410/BREMSC
https://github.com/SydneyBioX/CiteFuse
https://github.com/satijalab/seurat
https://github.com/XifengGuo/IDEC
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://github.com/hemberg-lab/SC3
https://github.com/shahcompbio/scvis
https://github.com/zji90/TSCAN
https://scvi-tools.org/
https://github.com/epurdom/cobolt
https://github.com/kodaim1115/scMM
https://github.com/canzarlab/Specter
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and normalized separately then concatenated as a single input. To keep 

consistency, all the methods use the same highly variable genes in RNA and 

ATAC data and use full ADTs in the CITE-seq data. If the methods require 

normalized data as inputs without defining a specific way of normalization, we 

apply the same normalization method as that for scMDC (described in section 

3.4.1). Before doing K-means clustering, PCA is performed on the normalized 

mRNA data and the top 20 PCs are used for clustering. BREM-SC uses the raw 

count matrix as input directly. The data normalization for Citefuse follows the 

vignette (https://sydneybiox.github.io/CiteFuse/articles/CiteFuse.html). 

Specifically, mRNA counts are normalized by the function “logNormCounts” in 

the Scater package(McCarthy, Campbell, Lun, & Wills, 2017) with default 

settings. ADT counts are normalized and log-transformed by the function 

“normaliseExprs” from the CiteFuse package. Seurat uses the raw count 

matrices as input. Following the CITE-seq tutorial of Seurat, we use 

“LogNormalize” for mRNA and “centered log-ratio transformation” for ADT data 

normalization. Then the function “ElbowPlot” is used to find the best PCs 

(principal components) for clustering. The resolution in “FindClusters” function of 

Seurat is adjusted for different datasets in order to estimate a satisfactory 

number of clusters that are close to the real K. For the single-omics and multi-

omics clustering, the function ‘FindNeighbors’ and ‘FindMultiModalNeighbors’ 

(Hao et al., 2021) are used to find the neighbors of cells by the SNN (shared 

nearest-neighbor) and WNN (weighted nearest-neighbor) algorithms, 

respectively. For IDEC and TScan, normalized data are provided as inputs. SC3 

https://sydneybiox.github.io/CiteFuse/articles/CiteFuse.html
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needs both the raw data and the normalized data as input. When the cell number 

is higher than 5000, SC3 runs a SVM to estimate the cell types of the extra cells 

in a supervised manner. SCVIS is a variational autoencoder-based model aimed 

to reduce the dimension of scRNA-seq data. According to the author’s protocol 

(Ding et al., 2018), the count data are firstly processed as log2(CPM/10 + 1), 

where ‘CPM’ means the ‘counts per million’. Next, we concatenate CPMs of 

mRNA and ADT. Then the 100 PCs are extracted from the CPM matrix by PCA 

and used as the input for SCVIS analysis. K-means clustering is performed on 

the latent output of SCVIS. For TotalVI, we keep the default setting for all the 

datasets according to the official pipeline (https://docs.scvi-

tools.org/en/stable/tutorials/notebooks/totalVI.html). We then perform Kmeans 

clustering on the latent space of datasets from TotalVI since the number of 

clusters is supposed to be known. Specter(Ringeling & Canzar, 2021) uses the 

normalized RNA and ADT expression data as the input. We used the default 

setting for Specter’s multimodal analysis. For SMAGE-seq datasets, we compare 

our model to four competing methods: k-means + PCA, Seurat, scMM, and 

Cobolt. All the methods use the top 2000 highly variable mRNA and ATAC data 

from the SMAGE-seq data. If the methods need normalized data as input, we 

apply the same normalization method for it as that for scMDC. Before doing K-

means, PCA is performed on both mRNA and ATAC data and the top 20 PCs of 

each are used for clustering. For Seurat, the ATAC data, which is mapped to the 

gene regions, is processed in the same way as for the mRNA data. Then WNN 

algorithm is used for integrating multimodal data as described before. For Cobolt, 

https://docs.scvi-tools.org/en/stable/tutorials/notebooks/totalVI.html
https://docs.scvi-tools.org/en/stable/tutorials/notebooks/totalVI.html
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we follow the official pipeline 

(https://github.com/epurdom/cobolt/blob/master/docs/tutorial.ipynb) to produce 

the data embeddings. We then perform K-means clustering on the latent space 

of datasets since the number of clusters is supposed to be known. We followed 

the tutorial provided of scMM (v1.0.0)(Minoura et al., 2021) and used the default 

parameters. The embeddings of scMM are obtained and used for the K-means 

clustering.  

3.4.10 Evaluation metrics 

Adjust Rand Index (ARI)(Hubert & Arabie, 1985), Adjusted Mutual Information 

(AMI)(Vinh, Epps, & Bailey, 2010), and Normalized Mutual Information 

(NMI)(Alexander & Joydeep, 2003) are used as metrics to evaluate the clustering 

performance.  

Adjust Rand Index measures the agreements between two sets C and G. 

Assuming 𝑎 is the number of pairs of two objects in the same group in both C 

and G; 𝑏 is the number of pairs of two objects in different groups in both C and G; 

𝑐 is the number of pairs of two objects in the same group in C but in different 

groups in G; and 𝑑 is the number of pairs of two objects in different groups in C, 

but in the same group in G. The ARI is defined as: 

𝐴𝑅𝐼 =
(𝑛2)(𝑎+𝑑)−[(𝑎+𝑏)(𝑎+𝑐)+(𝑐+𝑑)(𝑏+𝑑)]

(𝑛2)−[(𝑎+𝑏)(𝑎+𝑐)+(𝑐+𝑑)(𝑏+𝑑)]
   (3.30) 

Let C = {C1, C2, …, Ctc}and G = {G1, G2, …, Gtg} be the predicted and ground 

truth labels on a dataset with n cells. NMI is defined as: 

https://github.com/epurdom/cobolt/blob/master/docs/tutorial.ipynb
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𝑁𝑀𝐼 =
𝐼(𝐂,𝐆)

max {𝐻(𝐂),𝐻(𝐆)}
     (3.31) 

 where 𝐼(𝐂, 𝐆) represents the mutual information between C and G and is defined 

as: 

𝐼(𝐂, 𝐆) = ∑ ∑ |𝐶𝑝⋂𝐺𝑞| log
𝑛|𝐶𝑃∩𝐺𝑞|

|𝐶𝑝|×|𝐺𝑞|

𝑡𝑔
𝑞=1

𝑡𝑐
𝑝=1    (3.32) 

and H(C) and H(G) are the entropies: 

𝐻(𝐂) = −∑ |𝐶𝑝| log
|𝐶𝑝|

𝑛

𝑡𝑐
𝑝=1     (3.33) 

𝐻(𝐆) = −∑ |𝐺𝑝| log
|𝐺𝑝|

𝑛

𝑡𝑔
𝑝=1     (34) 

Similarly, AMI is defined as: 

𝐴𝑀𝐼(𝐂, 𝐆) =
𝐼(𝐂,𝐆)−𝐸{𝐼(𝐂,𝐆)}

max {H(𝐂),H(𝐆)}−𝐸{𝐼(𝐂,𝐆)}
    (35) 

The extra component 𝐸{𝐼(𝐂, 𝐆)} is the expected mutual information 

between two random clusters (Vinh et al., 2010). 

To illustrate the superiority of scMDC over the competing methods in 

multiple datasets, we rank the methods based on their clustering performance 

(AMI, NMI, and ARI) on each dataset. The lower the rank, the better the 

performance. Besides, a one-sided paired t-test is conducted to test if the 

clustering metrics (NMI, AMI, and ARI) of scMDC are significantly higher than 

that of the competing methods, which is implemented by the “t.test()” function in 

R. Nominal p-value <0.05 is considered to indicate a significant difference. 
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3.4.11 Public real datasets 

The real CITE-seq datasets used in this study are summarized in Table 1.1. The 

GSE100866 dataset is downloaded from GEO 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE100866). The cells in 

this dataset are cord blood mononuclear (CBMN) cells and annotated by Wang 

et al. from marker genes and ADTs (X. Wang et al., 2020).  Cells with ‘Unknown’ 

cell types were filtered out. The bone marrow mononuclear cells (BMNC, 

GSE128639) and the cell type labels are downloaded from the “bmcite” dataset 

in “SeuratData” package (v0.2.1). The mouse spleen lymph node datasets 

(SLN208 and SLN111, GSE150599) and the cell type labels are provided by 

TotalVI (Gayoso et al., 2021) on GitHub 

(https://github.com/YosefLab/totalVI_reproducibility). Cells are also filtered by the 

author. PBMC dataset is available on the 10X website 

(https://support.10xgenomics.com/single-cell-gene-expression/datasets). We 

downloaded the preprocessed data and the cell type labels from the GitHub of 

Specter (https://github.com/canzarlab/Specter)(Ringeling & Canzar, 2021).  

The real Single-cell Multiome ATAC Gene Expression (SMAGE-seq) 

datasets used in this study are summarized in Table 1.2. All the SMAGE-seq 

datasets are downloaded from the 10X Genomics website 

(https://www.10xgenomics.com/resources/datasets). The first and second 

datasets are from human peripheral blood mononuclear cells (PBMCs) with 

about 3k and 10k cells. We denote them as PBMC3K and PBMC10K 

respectively. The third dataset is from the E18 mouse brain. We denote it as E18. 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE100866
https://github.com/YosefLab/totalVI_reproducibility
https://support.10xgenomics.com/single-cell-gene-expression/datasets
https://github.com/canzarlab/Specter
https://www.10xgenomics.com/resources/datasets
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For each dataset, mRNA counts are downloaded directly while the ATAC gene 

counts are generated by us. Specifically, after filtering the reads by ATAC peak 

region fragments, nucleosome signal, and TSS enrichment, we mapped each 

read to a gene region by the function ‘GeneActivity’ in Signac (v1.4.0) (Stuart, 

Srivastava, Lareau, & Satija, 2020). All the steps are referred to the official 

pipeline from Satija lab. Then, the PBMC cells are annotated by the label 

transferring method in Seurat V3(Stuart et al., 2020) with the reference datasets 

“pbmc_10k_v3.rds” 

(https://www.dropbox.com/s/zn6khirjafoyyxl/pbmc_10k_v3.rds?dl=0) provided by 

Satija lab. For the E18 dataset, we transfer the labels from another mouse brain 

dataset (GSE126074 P0 mouse brain cortex) and the cell type labels are 

provided by the author of the SNARE-seq paper(S. Chen et al., 2019). 

3.4.12 Simulation 

The simulated data are generated by the R package SymSim (0.0.0.9000)(Zhang, 

Xu, & Yosef, 2019). The overall setting for simulation is from the Online vignettes 

of SymSim (https://github.com/YosefLab/SymSim). This setting was estimated 

from the Zeisel 2015 dataset (Zeisel et al., 2015). We lower the parameter 

“n_de_evf” to 5 to keep about 50% differential expressed genes/ADTs in the 

dataset. We performed three experiments to test the clustering performance of 

scMDC and generate 10 datasets in each experiment. In the first experiment, we 

adjusted the parameter “Sigma” in the function SimulateTrueCounts() to 0.6, 0.7, 

and 0.8 in mRNA and 0.3, 0.4, and 0.5 in ADT to simulate the high, medium, and 

low clustering signal among clusters (cell types). We give a lower sigma (higher 

https://www.dropbox.com/s/zn6khirjafoyyxl/pbmc_10k_v3.rds?dl=0
https://github.com/YosefLab/SymSim/blob/master/vignettes/SymSimTutorial.Rmd
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signal) to ADT data than mRNA data since it has a higher signal-to-noise ratio in 

the real datasets (X. Wang et al., 2020). In the second experiment, we adjust the 

parameter “alpha_mean” in function True2ObservedCounts() to 0.001, 0.00075, 

0.0005 in mRNA and 0.05, 0.045, 0.04 in ADT data to simulate low, medium, and 

high dropout rates. These settings are also consistent with that in the real 

datasets since mRNA has higher dropout rates than ADT data. In the third 

experiment, we added a batch effect in the data to test the model’s performance 

in batch effect correction. Medium signal and dropout rate are used in this data 

and the parameter “batch_effect_size” in function DivideBatches() is set to 1. All 

the simulated datasets have 8 groups, 1000 cells, 2000 genes, and 30 ADTs. 

3.4.13 Data availability 

The GSE100866 data used in this study are available in the GEO database 

under accession code GSE100866 

[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE100866]. Cell type 

labels are downloaded from the GitHub of BREM-SC 

(https://github.com/tarot0410/BREMSC). The BMNC dataset and the cell type 

labels are downloaded from the “bmcite” dataset in “SeuratData” package 

(https://github.com/satijalab/seurat-data). The mouse spleen lymph node 

datasets (SLN208 and SLN111) and the cell type labels are provided by TotalVI 

(Gayoso et al., 2021) on GitHub 

(https://github.com/YosefLab/totalVI_reproducibility). These datasets are 

sequenced in two batches. PBMC dataset is available on 10x Genomics website 

(https://support.10xgenomics.com/single-cell-gene-expression/datasets) and the 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE100866
https://github.com/tarot0410/BREMSC
https://github.com/satijalab/seurat-data
https://github.com/YosefLab/totalVI_reproducibility
https://support.10xgenomics.com/single-cell-gene-expression/datasets
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cell type labels are downloaded from the GitHub of Specter 

(https://github.com/canzarlab/Specter). All SMAGE-seq datasets (PBMC3K, 

PBMC10K, and mouse brain E18) are downloaded from the 10X Genomics 

website (https://www.10xgenomics.com/resources/datasets). Labels are 

transferred by Signac (v1.4.0) from the annotated datasets. 

3.4.14 Code availability  

Codes supporting this study are available on GitHub: 

https://github.com/xianglin226/scMDC/releases/tag/v1.0.0. 

https://github.com/canzarlab/Specter
https://www.10xgenomics.com/resources/datasets
https://github.com/xianglin226/scMDC/releases/tag/v1.0.0


61 

CHAPTER 4 

SPATIAL-RESOLVED SCRNA-SEQ MODEL – DSSC 

 

 

4.1 Introduction 

In this chapter, we introduce a novel clustering approach for sp-scRNA-seq data, 

DSSC (Deep Spatial-constrained Single-cell Clustering). DSSC integrates the 

prior information from both the physical organization of cells and the expression 

of the spatial dependent marker genes into the clustering process by a denoising 

graphical autoencoder with cell-to-cell constraints. Our extensive experiments 

indicated that DSSC outperforms the state-of-the-art methods in both simulated 

and real datasets, revealing that it is a promising tool for spatial-resolved single-

cell data clustering. 

 

4.2 Experiments and Results  

4.2.1 Simulation experiments 

DSSC is developed for clustering spatial-resolved single-cell data by integrating 

the prior knowledge from cell/spot location and marker genes. The overall 

architecture of the DSSC model is shown in Figure 4.1. In the simulation 

experiments, we test the performance of DSSC on the data in different cell-type 

spatial organizations and dependencies. We simulated the scRNA-seq data by 

Splatter and placed them in the spatial locations from two real datasets from 1) 

osmFISH data (see Figure 4.2a); 2) sample 151673 from spatialLIBD data (see 
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Figure 2b); We adjust the cell-type spatial dependencies by perturbing the 

spatial coordinates of 10%, 15%, and 20% of total cells (see details in the 

method section). Constraints are built based on the true labels with 5% 

perturbations. We compare DSSC with seven existing clustering methods 

including SpaGCN, stLearn, Seurat, Giotto, BayesSpace, k-means + PCA, and 

SC3. We compare both the clustering performance (measured by AC, NMI, and 

ARI) and the predicted label’s spatial heterogeneity (denoted as PLSH, 

measured by KNN ACC and Moran’s I) of these methods. The results of 

simulation experiments are shown in Figure 4.4. Generally, we find that the 

spatial-based clustering methods (DSSC, SpaGCN, stLearn, BayesSpace, and 

Giotto) have higher clustering performance and PLSH than the traditional 

scRNA-seq clustering methods (Seurat, SC3, and k-means). Cell-type spatial-

dependency is negatively correlated with the performance of the spatial-based 

clustering methods, but it has no influence on the performance of the traditional 

clustering methods. BayesSpace cannot encode the spatial coordinates of the 

osmFISH data, so the clustering performance and PLSH of it are much higher in 

spatial organization 2 (see Figure 4.2b) than in spatial organization 1 (see 

Figure 4.2a). Although DSSC outperforms the competing methods in both spatial 

organizations, its advantage is much higher in spatial organization 1 than in 

spatial organization 2. In summary, these results reveal that DSSC’s 

performance is not affected by the sequencing technologies and cell type spatial 

organizations, while other methods may prefer the sequencing-based 

technologies (such as the 10x Visium). Besides, DSSC can keep a superior 
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performance over the competing methods under low, medium, and high cell-type 

dependencies. Therefore, these experiments demonstrate the robustness of 

DSSC’s performance. The statistical tests of the clustering performance between 

DSSC and the competing methods are shown in Appendix Tables D.1, D.2, and 

D.3. 

 

Figure 4.1 DSSC model architecture. The inputs of DSSC are the gene 
expression matrix and the cell coordinates. The outputs of DSSC are the low-
dimension latent space (32D) and the predicted labels. Briefly, DSSC learns a 
low-dimensional representation of the gene expression matrix while 
simultaneously leveraging the prior knowledge from the spatial coordinates of 
cells/spots and the marker genes. Clustering is performed on latent space. 
Constraint loss, reconstruction loss, and clustering loss are optimized 
simultaneously. ML loss and CL loss are optimized alternately. Notations: BN 
stands for the batch normalization; ELU stands for the ELU activation; ML 
indicates the must-links constraints; CL indicates the cannot-link constraints; 
ZINB means the zero-inflated negative binominal. 
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Figure 4.2 Simulation results from the (a) spatial organization 1 (from osmFISH 
data) and (b) spatial organization 2 (from spatialLIBD sample 151507). True 
labels with 10%, 15%, and 20% perturbed coordinates are shown on the physical 
spaces (left). The corresponding clustering results are shown in the bar plots 
(right). 

 

4.2.2 Real datasets 

We then tested the performance of DSSC in three studies including 25 real 

datasets with 1 dataset from osmFISH (mouse cortex), 12 datasets from 

spatialLIBD (human cortex), and 12 datasets from 10x Genomics (Mouse brain, 
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denoted as 10xMBAD). In all datasets, we compare DSSC with seven competing 

methods as described in section 4.2.1. For the data from spatialLIBD and 

10xMBAD, we use the markers from the original paper of spatialLIBD (Pardo et 

al., 2022). Since osmFISH data only has 33 genes, we only use the genes with 

the top Moran’s I. 

The results of the osmFISH dataset are shown in Figure 4.3. Since the 

latent dimension of SpaGCN is larger than the feature dimension of this data, we 

exclude SpaGCN from the competing methods for this experiment. BayesSpace 

cannot recognize the neighbors from the hybridization technologies, so the 

spatial information is not used by it for this dataset. The marker genes used here 

for DSSC are Rorb and Syt6 (see Figure 4.3c). As expected, the expression of 

these genes have high spatial dependency. We find that DSSC can identify the 

layer structures in the cortex (see Figure 4.3a). These layers are not clearly 

profiled by the competing methods (see Figure 4.3b). Besides, DSSC 

outperforms the competing methods in both clustering performance and PLSH 

(see Figure 4.3b). Some spatial-based methods, such as Giotto and stLearn, 

have very high KNN accuracy, but their clustering performance is much lower 

than DSSC. A potential reason for this result is that the spatial information 

overwhelms the clustering signal from the gene expression during the clustering 

process, resulting in the high spatial dependence but low clustering performance. 
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Figure 4.3 Results of osmFISH dataset. (a) predicted labels; (b) clustering 
performance; and (c) marker genes used for DSSC. 

 

We then test all the methods on the spatialLIBD datasets (see Figure 4.4). 

The marker genes used in this dataset are PCP4 and MOBP (see Figure 4.4c) 

for layer 5 and WM respectively from the paper of spatialLIBD. These genes 

show strong spatial dependencies. So, they can be used to guide the clustering 

process. Figure 4.4a shows that DSSC is the only method that can identify 5 

layers in sample 151673. Some other spatial-based methods, such as SpaGCN, 

and BayesSpace, cluster some cells in clumps, not in layers. Figure 4.4b shows 
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that DSSC outperforms all the competing methods in the 12 spatialLIBD samples 

in both clustering performance and PLSH. Spatial-based methods have overall 

better performance than the traditional scRNA-seq clustering methods, revealing 

the benefits from using the spatial information. BayesSpace has the second-best 

performance in this dataset since it can recognize the spatial neighbors for each 

cell in this dataset. The statistical tests of the clustering performance between 

DSSC and the competing methods are shown in Appendix Table D.4. 

 

Figure 4.4 Results of spatialLIBD datasets. (a) visualization of the predicted label 
for sample 151673; (b) the clustering performance of the 12 samples; and (c) the 
marker gene used in this experiment. 
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We then apply DSSC on the 10xMBAD dataset (see Figure 4.5). Since 

this dataset has no true labels, we use silhouette score (SS) to evaluate the 

clustering performance. We find that all the methods have similar predicted 

labels’ spatial heterogeneity on this dataset (see Figure 4.5a). DSSC, 

BayesSpace, and SpaGCN have higher SS than other methods. To further prove 

the accuracy of clustering of DSSC, we identify the cluster of thalamus in a wild-

type (WT) sample and an Alzheimer’s Disease (AD) sample by a marker gene 

Tcf7l2 (see Figure 4.5b)(Lipiec et al., 2020) and then perform a different 

expression analysis (DE) between the two groups of cells. We select thalamus 

since it has been widely demonstrated to be associated with the memory and 

cognition loss during AD (Pardilla-Delgado et al., 2021; Van De Mortel, Thomas, 

Van Wingen, & Initiative, 2021). BayesSpace and SpaGCN fail to identify the 

region of thalamus in the corresponding WT and AD samples (see Figure 4.5c). 

The DE results are shown in Figure 4.5d. Many genes that overexpress in the 

AD group have been proved by previous studies. For example, Olfm1 has been 

shown as a potential neuroprotective agent in Alzheimer’s disease (Takahama, 

Nakaya, & Tomarev, 2014); Cst3 has contributions in increasing the neuronal 

vulnerability and impaired neuronal ability to prevent neurodegeneration (Kaur & 

Levy, 2012); Syn2 is related to the onset and progression of Alzheimer's disease 

(Kumar & Reddy, 2020). As a result, in the pathway analysis of the KEGG 

geneset from the DE results (see Figure 4.5e), the Alzheimer’s disease pathway 

is significantly enriched in the thalamus of the AD sample. Another significant 

pathway, olfactory transduction, is also shown to be associated with AD from the 
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previous studies (Zou, Lu, Liu, Zhang, & Zhou, 2016). Spliceosome is also 

demonstrated to be altered in the Alzheimer transcriptomes (Koch, 2018), which 

is significantly down-regulated in the AD sample. These downstream analyses 

further consolidate the clustering results of DSSC. The statistical tests of the 

clustering performance (SS) between DSSC and the competing methods are 

shown in Appendix Table D.5. 

 

Figure 5 Results of 10xMBAD datasets. (a) clustering performance (without true 
labels); (b) a cartoon of brain showing the position of thalamus (from 
www.flintrehab.com) and the expression of a marker gene, Tcf7l2, for thalamus 
in a WT and an AD sample; (c) predicted labels for a wild type sample and an 
Alzheimer’s disease sample from DSSC, BayesSpace, and SpaGCN; the black 
arrows indicate the thalamus regions; (d) volcano plot from the differential 
expression analysis (DE) between the cells in thalamus from the wild type and 
the Alzheimer’s disease samples; (e) KEGG pathway analysis from the DE 
results in panel D. The pathway of Alzheimer’s disease is highlighted by the red 
box. 
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4.2.3 Model test 

We test three parameters in DSSC: 1) the number of constraints (ML and CL 

respectively); 2) the parameter that controls the clustering loss (gamma); 3) the 

number of neighbors in the kNN graph for GAT layers on the 12 spatialLIBD 

datasets (see Figure 4.6a). We find that when the constraint number is 0 (no 

constraints) or 6000 (too many constraints), the performance of DSSC becomes 

unstable. A suitable number of constraints (here we suggest setting the 

constraint number around the cell number) will not only improve the clustering 

performance but also makes the model more stable. Compared to the model 

without clustering loss (gamma=0), DSSC’s performance is improved when 

gamma is 0.01. However, a too high gamma (>1) will seriously impact the 

model’s performance. When the numbers of neighbors are higher than 10, 

DSSC’s performance is not sensitive to them. However, a model without 

considering neighbors (K=0) has much lower performance revealing the 

contributions from using the spatial information in clustering analysis. The results 

of the statistical tests of the parameter tuning experiments are in Appendix 

Tables D.6, D.7, and D.8. We then test DSSC on the simulated datasets with 

incremental numbers of cells (see Figure 4.6b). We find that DSSC has a 

linearly ascending running time with the increased cell numbers. Thus, it can be 

easily used for analyzing large datasets. All experiments here are performed on 

the NVIDIA Tesla P100 with 16Gb memory. 
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Figure 4.6 Parameter tuning of DSSC. (a) Parameter tuning on the 12 
spatialLIBD datasets and (b) running time test on the simulated data with 
incremental cell numbers. 
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4.3 Discussion 

In this chapter, we have introduced a novel deep learning approach, DSSC, for 

clustering sp-scRNA-seq data. DSSC utilizes a denoising graphical autoencoder 

to learn a nonlinear representation of data. Spatial information is integrated into 

the clustering approach in two ways: 1) constraints from marker genes; and  

2) GAT encoders. To our knowledge, DSSC is the first model that can encoder 

the information from both spatial coordinates and marker genes for guiding the 

clustering. More broadly, DSSC is a flexible model in which its reconstruction 

loss function can be switched depending on the data structure. The available 

reconstruction loss includes ZINB loss, NB loss, and MSE loss to deal with 

various scenarios. In this study, DSSC has been tested on both simulated and 

real datasets. The aim of our experiments is to test the robustness of DSSC’s 

clustering performance over the data with different cell type spatial organization 

and cell type spatial dependency. The evaluation has been conducted regarding 

two aspects, clustering performance, and space heterogeneity. Our results show 

that DSSC outperforms the state-of-art methods over different datasets. 

Recently, a new general-purpose density estimator has been introduced 

by employing a symmetrical and paired generative adversarial network (GAN) 

architecture (Liu, Xu, Jiang, & Wong, 2021). Adopting this GAN architecture, a 

new method scDEC enables simultaneous learning of latent features and cell 

clustering and shows its superiority over competing methods in scATAC-seq 

analysis (Liu, Chen, Jiang, & Wong, 2021). If spatial information could be 

accommodated in this GAN architecture, we may expect similar promising 
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improvement in analysis of sp-scRNA-seq data. We leave such exploration to 

future work. 

One limit of the current model is its compatibility with the datasets with low 

spatial dependency. DSSC employs the spatial information of cells to boost the 

clustering performance, while not all tissue types have a high spatial dependency. 

Besides, for approaches like 10x Visium, our model is dependent on the 

assumption that all the cells in one spot are in the same cell type. In the future 

investigation, this issue can be solved by doing the decomposition of spots. The 

latent representation of DSSC can be used for many downstream analyses, such 

as cell-to-cell communication and trajectory analysis. 

 

4.4 Methods and Materials 

4.4.1 Denoising autoencoder 

The autoencoder is a neural network for learning a nonlinear representation of 

data (Hinton & Salakhutdinov, 2006). It receives corrupted data with artificial 

noises and reconstructs the original data (Vincent et al., 2008). It is able to learn 

a robust latent representation for noisy data. We use the denoising autoencoder 

for the highly noisy count data of cells. Let’s denote the preprocessed counts 

data as  𝑋 and the corrupted data as 𝑋𝑐, formally: 

𝑋𝑐 =  𝑋 + 𝜎 ∗ 𝑛    (4.1) 

where 𝑛 is the artificial noise in standard Gaussian distribution (with mean=0 and 

variance=1), and 𝜎 controls the weights of 𝑛. We set 𝜎 as 0.1. 
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Next, we use an autoencoder to reduce the dimension of count data. 

Encoders (E) are graphical attention networks (GAT) layers and decoders (D) are 

fully connected neural networks. Denoting the latent space as Z and the 

learnable weights of encoder as w, the encoder can be shown as 𝑍 = 𝐸𝑤(𝑋𝑐). 

The GAT layers in 𝐸 can be formalized as:  

𝑋𝑖 = {

𝐸𝐿𝑈(𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚(𝐺𝐴𝑇𝑖
(𝐾)(𝑋𝑐, 𝐴)))          𝑖𝑓 𝑖 = 1

𝐸𝐿𝑈(𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚(𝐺𝐴𝑇𝑖
(𝐾)(𝐸𝐿𝑈(𝑋𝑖−1), 𝐴)))         𝑖𝑓1 < 𝑖 < 𝐿

𝐺𝐴𝑇𝑖
(𝐾)(𝐸𝐿𝑈(𝑋𝑖−1), 𝐴)          𝑖𝑓 𝑖 = 𝐿

 (4.2) 

where 𝑋𝑖 is the output of the ith layer. 𝐺𝐴𝑇𝑖
(𝐾)

 is the ith GAT layer with K heads. L 

is the total layers of encoder. A is the adjacent matrix of a kNN graph 𝐺 built 

based on the spatial coordinates of cells. Specifically, the distance between two 

cells i and j is measured by Euclidean distance: 

𝑀𝑖𝑗 = √(𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2   (4.3) 

where x and y indicate the coordinates of cells i and j in a two-dimensional 

physical space. Then 𝐴𝑖𝑗 (𝑖, 𝑗 𝜖 1, 2, 3, … ,𝑁) is built by: 

𝐴𝑖𝑗 = {
1, 𝑖𝑓 𝑖 𝑖𝑠 𝑡ℎ𝑒 𝐾 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑜𝑓 𝑗 𝑜𝑛 𝑡ℎ𝑒 𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 𝑠𝑝𝑎𝑐𝑒

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4.4) 

A is then normalized by �̃� = �̅� ∙ 𝐴 ∙ �̅� , where �̃�  is the normalized graph, �̅�  is 

𝑑𝑖𝑎𝑔(𝑝𝑜𝑤𝑒𝑟(∑ 𝐴𝑗
𝑁
𝑗 , −0.5))  and (∙) means dot product. Then �̃�  is used as the 

input for the GAT encoder. In this study, we set the number of heads as 3. The 

decoder is  𝑋′ = 𝐷𝑤′(𝑍), where  𝑤′ are the learnable weights for the decoder and 

𝑋′ is the reconstructed counts from the decoder. The ELu activation function 
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(Nair & Hinton, 2010) and batch normalization are used for all the hidden layers 

in the encoder and decoder except the bottleneck layer. In the default setting, we 

use two layers of encoder and decoder. The default bottleneck layer is set as 32.  

We employ a zero-inflated negative binomial (ZINB) model in the 

reconstruction loss function to characterize the zero-inflated and over-dispersed 

count data (Tian et al., 2019). Note, the raw count data, not the normalized data, 

is used in the ZINB model (Eraslan et al., 2019; Lopez et al., 2018; Tian et al., 

2019). Let 𝑋𝑖𝑗 be the count for cell i and gene j in the raw count matrix. The NB 

distributions are parameterized by 𝜇𝑖𝑗  and 𝜃𝑖𝑗  as means and dispersions 

respectively. Formally: 

𝑁𝐵(𝑋𝑖𝑗|𝜇𝑖𝑗, 𝜃𝑖𝑗) =
Γ(𝑋𝑖𝑗+𝜃𝑖𝑗)

𝑋𝑖𝑗!Γ(𝜃𝑖𝑗)
(

𝜃𝑖𝑗

𝜃𝑖𝑗+𝜇𝑖𝑗
)
𝜗𝑖𝑗

(
𝜃𝑖𝑗

𝜃𝑖𝑗+𝜇𝑖𝑗
)
𝑋𝑖𝑗

  (4.5) 

Then, ZINB distribution is parameterized by the negative binomial and an 

additional coefficient 𝜋𝑖𝑗 for the probability of dropout events (zero mass): 

𝑍𝐼𝑁𝐵(𝑋𝑖𝑗|𝜇𝑖𝑗, 𝜃𝑖𝑗 , 𝜋𝑖𝑗) = 𝜋𝑖𝑗𝛿0(𝑋𝑖𝑗) + (1 − 𝜋𝑖𝑗)𝑁𝐵(𝑋𝑖𝑗|𝜇𝑖𝑗, 𝜃𝑖𝑗) (4.6) 

The loss function of ZINB-based autoencoder for the count data is defined 

as: 

𝐿𝑍𝐼𝑁𝐵 = ∑ −log (𝑍𝐼𝑁𝐵(𝑋𝑖𝑗 |𝜇𝑖𝑗 , 𝜃𝑖𝑗 , 𝜋𝑖𝑗 ))𝑖𝑗    (4.7) 

We use independent fully connected layers to estimate these parameters 

in ZINB loss functions. We add three independent fully connected layers 𝑀, 𝛩, 

and 𝛱 after the last hidden layer of the decoder which outputs the reconstructed 

matrix 𝑋′. The parameter layers are defined as: 



76 

𝑀 = 𝑑𝑖𝑎𝑔(𝑠𝑖)  ×  exp (𝑤𝜇𝑋
′);    (4.8) 

Θ = exp (𝑤𝜃𝑋
′);    (4.9) 

Π = exp (𝑤𝜋𝑋
′);    (4.10) 

where 𝑀, 𝛩, and 𝛱 are the matrix of estimated mean, dispersion, and drop-out 

probability for the ZINB loss of count data.  𝑤𝜇 , 𝑤𝜃 , and 𝑤𝜋  are the learnable 

weights for them, respectively. The size factor 𝑠𝑖 for the cell i was calculated in 

the preprocessing step.  

The sizes of layers are set to (128, 32) for the GAT encoder and (32, 128) 

for the fully connected decoder.  

4.4.2 Deep embedded clustering 

Our model has two learning stages, a pretraining stage and a clustering stage. In 

the pretraining stage, we only train the autoencoder without considering the 

clustering loss and the constraint loss (see details below). Then, in the clustering 

stage, we simultaneously optimize the autoencoder and the clustering results. 

We perform unsupervised clustering on the latent space of the autoencoder (Xie 

et al., 2016). Our autoencoder transfers the input matrix to a low dimensional 

space Z. The clustering loss is defined as the Kullback-Leibler (KL) divergence 

between the soft label distribution Q’ and the derived target distribution P’: 

𝐿𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔 = 𝐾𝐿(𝑃′ ∥ 𝑄′) =  ∑ ∑ 𝑝′𝑖𝑘 log
𝑝′𝑖𝑘

𝑞′𝑖𝑘
𝑘𝑖   (4.11) 

where the soft label 𝑞′𝑖𝑘 measures the similarity between 𝑧𝑖 and cluster center 𝜇𝑘 

by Student’s t-kernel (Maaten & Hinton, 2008). The cluster center 𝜇𝑘 is initialized 
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by applying a k-means on the bottleneck layer from the pretraining stage, and 

then updated per batch in the clustering stage. Formally, 𝑞′𝑖𝑘 is defined as: 

𝑞′𝑖𝑘 =
(1+∥𝑧𝑖−𝜇𝑘∥

2)−1

∑ (1+∥𝑧𝑖−𝜇𝑘′∥
2)−1𝑘′

    (4.12) 

The target distribution 𝑃′ which emphasizes the more certain assignments 

is derived from Q’. Formally 𝑝′𝑖𝑘 is defined as: 

𝑝′𝑖𝑘 =
𝑞′𝑖𝑘
2 /∑ 𝑞′𝑖𝑘𝑖

∑ (𝑞′
𝑖𝑘′
2 /∑ 𝑞′𝑖𝑘′𝑖 )𝑘′

    (4.13) 

During the training process, 𝑄′  and clustering loss are calculated per 

batch and 𝑃′ is updated per epoch. This clustering loss will improve the initial 

estimate (from k-means) in each iteration by learning from the high-confident cell 

assignments, which in turn helps to improve the low-confident ones (Xie et al., 

2016). 

4.4.3 Autoencoder with pairwise constraints 

Based on the autoencoder architecture, we add pairwise constraints of cells 

(Tian, Zhang, Lin, Wei, & Hakonarson, 2021a) on the latent space according to 

the expression of the marker genes. Similar to scDCC (Tian et al., 2021a), we 

employ the must-link constraints which pull two cells to have similar soft labels if 

they have similar expression patterns of one or more marker genes, and cannot-

link constraints which encourage two cells to have different soft labels if they 

have different expression patterns of one or more marker genes.  

Constraints are built by six steps, considering both the spatial coordinates 

and the gene expression of the cells: 1) select the marker genes from literatures; 
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2) for each marker, say gene A, smooth the expression of A by averaging the 

normalized count data of the k (k is defined according to the technology, we set it 

as 6 in this study) spatial neighbors of each cells; 3) define the cells with the top 

5% (cutoff1) expression of A as high, otherwise as low; 4) collect the cells as the 

confident cells if more than half (cutoff2) of its neighbors (and itself) have the 

high smoothed expression of A; 5) repeat step 2-4 for all the marker genes;  

6) since each marker gene represents a cell type (or a layer in cortex), we 

connect two confident cells by a must-link if they are selected by the markers for 

the same cell type (or layer); otherwise, we connect two confident cells by a 

cannot-link if they are selected by the markers for different cell types (or layers). 

It is noted that there is a tradeoff between the coverage and the reliability of 

constraints. A higher cutoff will decrease the coverage of constraints but also 

reduce the false positive links. We denote the constraints sampled here as the 

pool of constraints. 

The must-link and cannot-link constraints loss are defined as: 

𝐿𝑚𝑙 = ∑ 𝑙𝑜𝑔∑𝑞𝑖 × 𝑞𝑗(𝑖,𝑗)∈𝑀𝐿     (4.14) 

𝐿𝑐𝑙 = ∑ log (1 − ∑𝑞𝑖 × 𝑞𝑗)(𝑖,𝑗)∈𝐶𝐿    (4.15) 

where q is the soft labels described in the clustering section. Must-links and 

cannot-links are used for training the model alternately and are updated 

(resampled) during the training. The number of constraints can be set according 

to the cell numbers. For example, for a dataset with 4000 cells, we sample 4000 

must-links and cannot-links, respectively.  
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Combining the pairwise constraint loss, reconstruction loss, and clustering 

loss, the total loss of the DSSC is: 

𝐿 = 𝐿𝑍𝐼𝑁𝐵 + 𝛾 ∗ 𝐿𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔 + 𝛽 ∗ 𝐿𝑚𝑙 + 𝜆 ∗ 𝐿𝑐𝑙   (4.16) 

where 𝛾, 𝛽, and 𝜆 are the coefficients for the clustering loss, must-link loss, and 

cannot-link loss respectively. In the experiments of this study, 𝛾 is set to 0.01, 𝛽 

and 𝜆  are set to 0.1 and 1 respectively (see parameter tuning in the result 

section). 

4.4.4 Model implementation 

This model is implemented in Python3 using PyTorch (Paszke et al., 2017). 

Adam with AMSGrad variant (Kingma & Ba, 2014; Reddi et al., 2018) with an 

initial learning rate = 0.001 is used for the pretraining stage and the clustering 

stage. The kNN graph is calculated by the “kneighbors_graph” function from the 

scikit-learn package. The top 2000 HVGs are selected to train the model. We 

pretrain the autoencoders for 200 epochs before entering the clustering stage. In 

the beginning of the clustering stage, we initialize K centroids by the k-means 

algorithm. During the clustering stage, reconstruction loss and clustering loss are 

optimized first. Then, constraint losses are optimized with reconstruction loss. ML 

and CL losses are optimized alternately. The centroids are also continuously 

updated by the learning process. Before each epoch, constraints are randomly 

sampled from the constraint pools. The soft label distribution Q’ is calculated in 

each batch and the derived target distribution P’ is updated after each epoch. 

The convergence threshold for the clustering stage is that less than 0.1% of 
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labels are changed per epoch. The marker genes used in this study are from the 

original paper of the spatialLIBD datasets (Maynard et al., 2021), including PCP4, 

MOBP, FABP7, AQP4, CARTPT, KRT17 and so forth. More markers can be 

added if necessary. It is noted that we test the Moran’s I and check the 

expression pattern of each marker before using it (See Appendix F for details). If 

a marker has very low spatial dependency in a dataset, we exclude it for building 

constraints. For the osmFISH dataset with only 33 genes, we just use the genes 

with the highest spatial dependency (Moran’ I) as the markers. All experiments of 

DSSC in this study are conducted on NVIDIA Tesla P100 with 16Gb memory.  

4.4.5 Marker and gene selection 

Before running the autoencoder model, we use Moran’s I statistic (Miller et al., 

2021; Moran, 1950) to measure the gene spatial heterogeneity.  𝐼𝑘
𝑔𝑒𝑛𝑒

 stands for 

the Moran’s I of gene k, which is defined as: 

𝐼𝑘
𝑔𝑒𝑛𝑒

= 
𝑁

∑ ∑ 𝐴𝑁
𝑗=1

𝑁
𝑖=1

.
∑ ∑ 𝐴𝑖𝑗(𝑥𝑖−�̅�)(𝑥𝑗−�̅�)

𝑁
𝑗=1

𝑁
𝑖=1

∑ (𝑥𝑖−�̅�)
2𝑁

𝑖=1

   (4.17) 

where 𝑥 is the mean value of the normalized counts of the gene K over all cells. 

A is the kNN graph from spatial information of cells. Marker genes with low 

Moran’ I will not be used to build constraints. It is noted that gene filtering has a 

tiny influence on the performance of the osmFish dataset since it only has 33 

genes. These genes are all selected by the researchers so all of them are 

important for all or a part of cells in the tissue. In our experiments, because of the 

low feature number, we only selected 30 HVGs out of 33 genes. On the other 

hand, the sequencing-based methods profile the whole transcriptome (>20000 



81 

genes). Many genes are not informative for clustering and even mislead the 

clustering. So, feature selection is essential for these datasets. In our 

experiments, we select the top 2000 highly variable genes (HVGs) for training 

DSSC. An optional feature selection approach is to use the genes with the top 

Moran’s I. 

4.4.6 Evaluation metrics for clustering performance 

Adjusted Rand Index (ARI) (Hubert & Arabie, 1985), Normalized Mutual 

Information (NMI)(Alexander & Joydeep, 2003), and Clustering Accuracy (AC) 

are used as metrics to evaluate the performance of different methods.  

Adjusted Rand Index measures the agreements between two sets U and 

G. Assuming a is the number of pairs of two cells in the same group in both U 

and G; b is the number of pairs of two cells in different groups in both U and G; c 

is the number of pairs of two cells in the same group in U but in different groups 

in G; and d is the number of pairs of two cells in different groups in U, but in the 

same group in G. The ARI is defined as: 

𝐴𝑅𝐼 =
(𝑛2)(𝑎+𝑑)−[(𝑎+𝑏)(𝑎+𝑐)+(𝑐+𝑑)(𝑏+𝑑)]

(𝑛2)−[(𝑎+𝑏)(𝑎+𝑐)+(𝑐+𝑑)(𝑏+𝑑)]
  (4.18) 

Let U = {U1, U2, …, Ctu} and G = {G1, G2, …, Gtg} be the predicted and 

ground truth labels on a dataset with n cells. NMI is defined as: 

𝑁𝑀𝐼 =
𝐼(𝑈,𝐺)

max{𝐻(𝑈),𝐻(𝑉)}
    (4.19) 

where I(U,G) represents the mutual information between U and G and is defined 

as: 
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𝐼(𝑈, 𝐺) = ∑ ∑ |𝑈𝑝⋂𝐺𝑞| log
𝑛|𝑈𝑃∩𝐺𝑞|

|𝑈𝑝|×|𝐺𝑞|

𝑡𝑔
𝑞=1

𝑡𝑢
𝑝=1    (4.20) 

and H(U) and H(G) are the entropies: 

𝐻(𝑈) = −∑ |𝑈𝑝| log
|𝑈𝑝|

𝑛

𝑡𝑢
𝑝=1    (4.21) 

𝐻(𝐺) = −∑ |𝐺𝑝| log
|𝐺𝑝|

𝑛

𝑡𝑔
𝑝=1     (4.22) 

AC is defined as the best matching between predicted and true clusters, which is 

given as: 

𝐴𝐶 = max
𝑚

∑ 1
{𝑙�̂�=𝑚(𝑙𝑖)}

𝑛

𝑛
𝑖=1    (4.23) 

where 𝑙�̂�  are the true labels and 𝑙𝑖  are the predicted labels from clustering 

algorithms. n is the number of cells and m is the number of all possible one-to-

one mapping between 𝑙�̂� and 𝑙𝑖 . The best mapping is found by the Hungarian 

algorithm (Kuhn, 1955). 

The silhouette score (SS) is used to measure the clustering performance 

without labels. It compares how similar a cell is to its own cluster compared to 

other clusters. The silhouette score ranges from −1 to +1, where a high value 

indicates a better clustering. Let’s denote the silhouette score of cell i as 𝑆𝑖, so 

we have: 

𝑆𝑖 =

{
 

 
1 −

𝑎𝑖

𝑏𝑖
        𝑖𝑓 𝑎𝑖 < 𝑏𝑖 

0               𝑖𝑓 𝑎𝑖 = 𝑏𝑖
𝑏𝑖

𝑎𝑖
− 1     𝑖𝑓 𝑎𝑖 > 𝑏𝑖

    (4.24) 
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where 𝑎𝑖  stands for how well a cell I is assigned to its cluster based on the 

distance between this cell and all other cells in its cluster; 𝑏𝑖  stands for the 

smallest mean distance of the cell I to the cells in any other clusters. Then we 

use the mean value of 𝑆𝑖 over all the cells as the SS for a dataset. 

4.4.7 Evaluation metrics for spatial heterogeneity and concentration 

kNN accuracy measures the consistency of the labels between each cell and its 

spatial neighbors. It is defined as: 

𝐴𝐾𝑁𝑁 =
∑ 𝑦𝑖=𝑦�̂�
𝑁
𝑖=1

𝑁
     (4.25) 

where 𝑦𝑖 is the predicted label of cell i by clustering algorithms and �̂� is the major 

label of its neighbors (K=20) on the physical space. We also employ a variant of 

Moran’s I (Moran, 1950) to measure the cell type spatial concentration. Let 𝐼𝑙𝑎𝑏𝑒𝑙 

be the I score for the predicted labels (𝑦1, 𝑦2, 𝑦3, … , 𝑦𝑁) defined as: 

𝐼𝑙𝑎𝑏𝑒𝑙 = 
𝑁

∑ ∑ 𝐴𝑁
𝑗=1

𝑁
𝑖=1

.
∑ ∑ 𝐴𝑖𝑗𝐵𝑖𝑗

𝑁
𝑗=1

𝑁
𝑖=1

𝑁
   (4.26) 

where 𝐵𝑖𝑗 of cell i and j is defined as: 

𝐵𝑖𝑗 = {
1, 𝑖𝑓 𝑦𝑖 = 𝑦𝑗
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

    (4.27) 

, and A is the kNN graph (with k=20) from spatial information of cells. The 𝐼𝑙𝑎𝑏𝑒𝑙 

measures the degree that the physically neighboring cells have the same label. 

Both metrics range from 0 to 1. 
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4.4.8 Data simulation 

In order to test the model’s performance to integrate spatial information for 

clustering, we simulate the single-cell RNA-seq data by Splatter package in R 

(Zappia, Phipson, & Oshlack, 2017). The parameters for scRNA-seq data 

simulation are estimated from a real scRNA-seq dataset 

(https://support.10xgenomics.com/spatial-gene-expression/datasets) and the 

parameter of clustering signal (de.scale) is fixed as 0.4. Besides simulating the 

count data, we place each cell on a 2D space with a coordinate (x,y). The 

physical space and coordinates are extracted from two real datasets (osmFISH 

and 151507 from spatialLIBD). The regions (domains) on the physical space in 

the real datasets are provided by the authors. Specifically, let’s denote the spot 

number in a layer k (from true label) as 𝑛𝑘  and the total layer number as K. 

During the simulation, for a layer k, we use splatter to simulate 𝑛𝑘  cells and 

randomly assign these cells to the spatial coordinates of the spots in this layer. 

We do this for all K layers. So, the cell number in the simulated datasets should 

be the same as the spot number in the real dataset. Then, we perturb the spatial 

coordinate of 10%, 15%, and 20% of cells to control the cell type spatial 

dependency. We also use the spatial coordinates from two datasets (osmFISH 

(Codeluppi et al., 2018) and spatialLIBD 151507 (Maynard et al., 2021)) to 

simulate different spatial organizations. Therefore, our simulation experiments 

can test the robustness of DSSC’s performance in the data with different cell type 

spatial dependencies and cell type spatial organizations. To simulate the 

constraints from markers, we randomly connect 3000 cells in the same cell type 

https://support.10xgenomics.com/spatial-gene-expression/datasets
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(from the true label) as the must-links. We then perturb the cells in 5% must-links 

to simulate the real accuracy (about 95%). Similarly, we randomly connect 3000 

cells in the different cell types as the cannot-links. 

4.4.9 Real datasets 

We use data from three studies including 25 sp-scRNA-seq datasets in this study. 

The first dataset was measured by the osmFISH technology (Codeluppi et al., 

2018), and the other two datasets were sequenced by the 10x Visium technology 

and provided by spatialLIBD (Pardo et al., 2022) and 10x Genomics website, 

respectively. Specifically, the osmFISH dataset of the somatosensory cortex was 

downloaded from the website of Linnarsson lab 

(http://linnarssonlab.org/osmFISH/). This dataset contains 33 genes and 4839 

cells. We did not implement the feature selection for this dataset as the low 

dimension of features. All 10x Visium datasets are read by the ‘Load10x_Spatial’ 

function and preprocessed by the ‘SCTransform’ function by Seurat in R. The 

10x mouse brain Alzheimer’s disease dataset is downloaded from the website 

(https://www.10xgenomics.com/resources/datasets). This dataset contains 12 sp-

scRNA-seq data with 6 wild-type samples and 6 CRND8 APP-overexpressing 

transgenic (Alzheimer’s Disease, AD) samples. The mice brains were sampled in 

2.5, 5.7, and 13.2 month of age. Per phenotype per time-point has two replicates 

resulting in 12 samples in total. The spatialLIBD dataset is downloaded from R 

package “spatialLIBD” (Pardo et al., 2022). This dataset contains 12 spatial-

resolved RNA-seq datasets which can be grouped into three spatial 

organizations. Specifically, sample 151507-151510 have similar spatial 

http://linnarssonlab.org/osmFISH/
https://www.10xgenomics.com/resources/datasets
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organization, sample 151669-151672 have similar spatial organization, and 

sample 151673-151676 have similar spatial organization.  

4.4.10 Count data preprocessing 

The raw count data is preprocessed and normalized by the Python package 

SCANPY (Wolf et al., 2018). Specifically, the genes with no count are filtered out. 

The counts of a cell are normalized by a size factor 𝑠𝑖, which is calculated as 

dividing the library size of that cell by the median of the library size of all cells. In 

this way, all cells will have the same library size and become comparable. Then, 

the counts are logarithm transformed and scaled to have unit variances and zero 

means. The treated count data is used in our denoising autoencoder model. 

However, we use the raw count matrix to calculate the ZINB loss (Eraslan et al., 

2019; Lopez et al., 2018). 

4.4.11 Competing methods 

For consistency, we use DSSC’s data preprocessing and feature selection 

approaches for all the competing methods. Our competing methods include k-

means (with PCA) (https://scikit-

learn.org/stable/modules/generated/sklearn.cluster.KMeans.html), Seurat 

(https://github.com/satijalab/seurat) (Butler et al., 2018), SC3 

(https://github.com/hemberg-lab/SC3) (Kiselev et al., 2017), BayesSpace 

(https://github.com/edward130603/BayesSpace) (Zhao et al., 2021), Giotto 

(https://rubd.github.io/Giotto_site/) (Dries et al., 2021), SpaGCN 

(https://github.com/jianhuupenn/SpaGCN) and stlearn 

(https://github.com/BiomedicalMachineLearning/stLearn). For Seurat and Giotto, 

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://github.com/satijalab/seurat
https://github.com/hemberg-lab/SC3
https://github.com/edward130603/BayesSpace
https://rubd.github.io/Giotto_site/
https://github.com/jianhuupenn/SpaGCN
https://github.com/BiomedicalMachineLearning/stLearn
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we adjusted the resolution in the Louvain algorithm for a better K estimation 

(same or close to the real K). All other parameters in all the competing methods 

are kept in the default setting or following the settings in the official pipelines. It is 

noted that the latent dimension of SpaGCN is higher than the feature dimension 

of osmFISH data. So SpaGCN cannot be used to analyze osmFISH data. For 

consistency, H&E images are not used for all the methods. 

4.4.12 Statistical test 

The differences between the clustering performance of DSSC and the competing 

methods are tested by the one-sided paired t-test. 

4.4.13 Software availability  

Source code of DSSC is available at GitHub 

(https://github.com/xianglin226/DSSC). 



88 

CONCLUSION 

 

High throughput data generation, both multi-omics and spatial-resolved scRNA-

seq, revealed the great demands of scalable computational methods that can 

take advantages of the multi-dimensional measurements to efficiently improve 

the downstream analyses, such as the clustering and differential expression 

analysis. However, the state-of-the-art methods developed for the multi-omics 

scRNA-seq data clustering and the spatial-resolved scRNA-seq data clustering 

still have some potential issues which prevent them from achieving good 

performance and/or scalabilities. Thus, the existing computational methods do 

not catch up with the rapid changes in technologies and fail to fully fulfil their 

potential. In my study, I developed two models, scMDC and DSSC, for analyzing 

multi-omics single-cell data and spatial-resolved single-cell data, respectively. 

The extensive experiments demonstrated the superior performance of these 

novel models. Therefore, they represent promising tools for application in  

real-world genomic research.
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APPENDIX A 

EMBEDDINGS FROM SCMDC AND COMPETING METHODS 

 

Figures A.1, A.2, A.3, and A.4 show the U-maps of the embeddings extracted 

from different models. 

 

 

Figure A.1 Low-dimension representation of scMDC and the competing methods 

on the BMNC dataset. The t-SNE plots of the embeddings from (a) scMDC and 

four competing methods including (b) IDEC, (c) scVIS, (d) TotalVI, and (e) Seurat 

are shown in different rows. The first three columns show the expression pattern 

of ADT CD14, CD8A, and CD56. The last column shows the true labels (cell 

types) on the latent space of each method. 
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Figure A.2 Low-dimension representation of scMDC and the competing methods 

on the PBMC13K dataset. The t-SNE plots of the embeddings from (a) scMDC 

and two competing methods including (b) Cobolt and (c) scMM are shown in 

different rows. The three columns show the predicted labels, the batch IDs, and 

the true labels on the latent space of each method.
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Figure A.3 Low-dimension representation of scMDC and the variant methods on 

the SLN111 dataset. The t-SNE plots of the embeddings from (a) scMDC and 

three competing methods including (b) scMDC-RNA, (c) scMDC-ADT, and (d) 

scMDC-Concat are shown in different rows. The three columns show the 

predicted labels, the batch IDs, and the true labels on the latent space of each 

method.
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Figure A.4 Low-dimension representation of scMDC and the variant methods on 

the PBMC13K dataset. The t-SNE plots of the embeddings from (a) scMDC and 

three competing methods including (b) scMDC-RNA, (c) scMDC-ATAC, and (d) 

scMDC-Concat are shown in different rows. The three columns show the 

predicted labels, the batch IDs, and the true labels on the latent space of each 

method.



93 

APPENDIX B 

CLUSTERING PERFORMANCE OF SCMDC AND COMPETING METHODS 

ON SINGLE-MODAL DATASETS 

 

Figures B.1-8 show the clustering performance of scMDC and competing 

methods on single-modal data with single and multiple batches. 

 

 

Figure B.1 Clustering performance of scMDC-RNA and six single-modal 

clustering methods on the single-batch CITE-seq datasets. All methods only take 

mRNA counts or normalized counts as input. Clustering performance is 

evaluated by AMI, NMI, and ARI. 
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Figure B.2 Clustering performance of scMDC-RNA and six single-modal 

clustering methods on the multiple-batch CITE-seq datasets. All methods only 

take mRNA counts or normalized counts as input. Clustering performance is 

evaluated by AMI, NMI, and ARI.
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Figure B.3 Clustering performance of scMDC-ADT and six single-modal 

clustering methods on the single-batch CITE-seq datasets. All methods only take 

ADT counts or normalized counts as input. Clustering performance is evaluated 

by AMI, NMI, and ARI.
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Figure B.4 Clustering performance of scMDC-ADT and six single-modal 

clustering methods on the multiple-batch CITE-seq datasets. All methods only 

take ADT counts or normalized counts as input. Clustering performance is 

evaluated by AMI, NMI, and ARI. 
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Figure B.5 Clustering performance of scMDC-RNA and two single-modal 

clustering methods on the single-batch SMAGE-seq datasets. All methods only 

take mRNA counts or normalized counts as input. Clustering performance is 

evaluated by AMI, NMI, and ARI.
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Figure B.6 Clustering performance of scMDC-RNA and two single-modal 

clustering methods on a multiple-batch SMAGE-seq dataset. All methods only 

take mRNA counts or normalized counts as input. Clustering performance is 

evaluated by AMI, NMI, and ARI.
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Figure B.7 Clustering performance of scMDC-ATAC and two single-modal 

clustering methods on the single-batch SMAGE-seq datasets. All methods only 

take ATAC counts or normalized counts as input. The ATAC counts are mapped 

to the gene regions. Clustering performance is evaluated by AMI, NMI, and ARI.
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Figure B.8 Clustering performance of scMDC-ATAC and two single-modal 

clustering methods on a multiple-batch SMAGE-seq dataset. All methods only 

take ATAC counts or normalized counts as input. The ATAC counts are mapped 

to the gene regions. Clustering performance is evaluated by AMI, NMI, and ARI.
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APPENDIX C 

GSEA RESULTS OF THE BMNC DATASET 

 

Figures C.1-4 show the GSEA results based on the clustering results from 

scMDC for different genesets. 

 

Figure C.1 Enrichment plot of Hallmark pathways in CD14 monocyte cells from 

the BMNC dataset. The Kolmogorov-Smirnov test is used here, and the nominal 

P-values are adjusted for multiple comparisons (padj) by Benjamini & Hochberg 

(BH) method. Pathways with nominal P-values < 0.05 are shown.
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Figure C.2 Enrichment plot of Hallmark pathways in CD4 memory cells from the 

BMNC dataset. The Kolmogorov-Smirnov test is used here, and the nominal P-

values are adjusted for multiple comparisons (padj) by Benjamini & Hochberg 

(BH) method. Pathways with nominal P-values < 0.05 are shown. 

 

 

 

Figure C.3 Enrichment plot of Hallmark pathways in CD4 naive cells from the 

BMNC dataset. The Kolmogorov-Smirnov test is used here, and the nominal P-

values are adjusted for multiple comparisons (padj) by Benjamini & Hochberg 

(BH) method. Pathways with nominal P-values < 0.05 are shown. 

 



103 

 

Figure C.4 Enrichment plot of Hallmark pathways in CD8 naive cells from the 

BMNC dataset. The Kolmogorov-Smirnov test is used here, and the nominal P-

values are adjusted for multiple comparisons (padj) by Benjamini & Hochberg 

(BH) method. Pathways with nominal P-values < 0.05 are shown. 
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APPENDIX D 

STATISTICAL TESTS OF SCMDC 

 

Tables D.1-5 show the results of statistical tests of the experiment. 

 

Table D.1 One-Sided Paired T-Test between the Clustering Performance of 

scMDC and the Competing Methods for the CITE-Seq Datasets 

Methods p_AMI* p_NMI* p_ARI* 

BREM-SC 0.00402824 0.00355908 9.1677E-06 

CiteFuse 0.0079801 0.01111861 0.00036261 

IDEC 6.7698E-05 7.57E-05 5.7372E-07 

Kmeans + PCA 2.1861E-05 2.1894E-05 6.0185E-05 

SC3 1.4569E-05 1.366E-05 2.2145E-05 

SCVIS 0.00025911 0.00030163 5.887E-06 

Seurat 0.00212642 0.00220737 0.00062321 

Specter 0.00015003 0.00010859 0.00161893 

TotalVI 0.01579666 0.0144765 0.00069109 

Tscan 2.0401E-05 2.4565E-05 1.9785E-05 

* p indicates P-value. 

 

Table D.2 One-Sided Paired T-Test between the Clustering Performance of 

scMDC and the Competing Methods for the SMAGE-Seq Datasets 

Methods p_AMI* p_NMI* p_ARI* 

Cobolt 0.04201604 0.04327985 0.01847998 

Kmeans + PCA 0.00932083 0.00834753 0.01511548 

scMM 0.00944043 0.00970153 0.01339524 

Seurat 0.01684468 0.01755079 0.01762545 

* p indicates P-value. 
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Table D.3 One-Sided Paired T-Test between the Clustering Performance of 

scMDC and the Competing Methods for the Simulation Datasets 

Methods p_AMI* p_NMI* p_ARI* 

BREMSC 0.00205187 0.00194259 6.9106E-05 

CiteFuse 3.9747E-06 3.9025E-06 2.7077E-05 

iDEC 5.5039E-07 5.4942E-07 9.7328E-07 

PCA+Kmeans 0.00012266 0.00012191 0.00012582 

SC3 7.5575E-05 7.5267E-05 9.2593E-06 

SCVIS 4.3007E-05 4.2824E-05 9.334E-06 

Seurat 5.6212E-06 4.9064E-06 0.00022347 

Specter 1.2021E-06 1.4494E-06 1.1547E-05 

TotalVI 0.0028567 0.00282413 0.0248134 

Tscan 5.0904E-05 5.1844E-05 1.4705E-05 

* p indicates P-value. 
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Table D.4 One-Sided Paired T-Test between the Clustering Performance of 

scMDC and the Competing Methods for the Model Testing Experiments 

 

 

Table D.5 One-Sided Paired T-Test between the Clustering Performance of 

scMDC and the Competing Methods for the Parameter Tunning Experiments 

Parameters Values Pvals_ami* Pvals_nmi* Pvals_ari* 

Fi 0.0001 0.657522448 0.654359414 0.339330244 

Fi 0.001 0.061665126 0.061031154 0.15169793 

Fi 0.005 0.185708427 0.183215647 0.065754824 

Fi 0.01 0.721740687 0.721638474 0.172244312 

Fi 0.1 0.996335282 0.996328807 0.993537274 

Fi 1 0.999079993 0.99907693 0.998847524 

Gamma 0.01 0.404148719 0.402075548 0.465113431 

Gamma 0.1 0.020012276 0.019725304 0.027002903 

Gamma 1 0.273661585 0.272609533 0.211856888 

Gamma 10 0.505974017 0.505992115 0.565385718 

Gamma 100 0.859013414 0.858343271 0.82483211 

 

Method1 Method2 Pval_AMI* Pval_NMI* Pval_ARI* 

scMDC ATAC 0.07041006 0.07245205 0.09195784 

scMDC Concat-ATAC 0.00194839 0.00135246 0.0296167 

scMDC RNA 0.00015569 0.00016842 0.00013612 

scMDC ADT 0.00124744 0.0011954 0.00185413 

scMDC Concat-ADT 9.0239E-06 9.9314E-06 8.4946E-06 
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APPENDIX E 

STATISTICAL TESTS OF DSSC 

 
 
Table E.1 Statistical Test of the Simulation Results with 10% Permutation 

Datasets Methods1 Methods2 Pval_AC Pval_NMI Pval_ARI 

151507 K-means + PCA DSSC 4.24633E-13 3.28874E-14 2.0376E-13 

151507 SC3 DSSC 5.18832E-14 5.36234E-17 4.54032E-15 

151507 Seurat DSSC 4.66238E-15 5.61941E-13 1.68655E-14 

151507 BayesSpace DSSC 0.082742145 0.119675253 0.120332566 

151507 Giotto DSSC 4.66252E-08 1.77105E-07 3.495E-07 

151507 spaGCN DSSC 0.00126916 0.000167417 0.003788902 

151507 stLearn DSSC 9.9485E-11 4.79135E-12 9.39773E-12 

osmFish K-means + PCA DSSC 1.35883E-10 2.36585E-10 4.95313E-11 

osmFish SC3 DSSC 3.02622E-14 8.97591E-15 9.08673E-16 

osmFish Seurat DSSC 2.43221E-09 9.52464E-11 7.35759E-10 

osmFish BayesSpace DSSC 1.60168E-08 3.67412E-08 4.25781E-09 

osmFish Giotto DSSC 1.12121E-07 9.31088E-07 4.97187E-07 

osmFish spaGCN DSSC 1.5628E-05 3.05188E-06 2.46248E-05 

osmFish stLearn DSSC 1.8695E-10 1.86878E-10 5.91744E-10 

 
 
 
Table E.2 Statistical Test of the Simulation Results with 15% Permutation 

Datasets Methods Methods Pval_AC Pval_NMI Pval_ARI 

151507 K-means + PCA DSSC 2.43431E-09 1.89334E-12 1.40263E-10 

151507 SC3 DSSC 1.77821E-11 2.25215E-17 2.07945E-12 

151507 Seurat DSSC 1.46316E-10 1.51041E-11 7.82944E-11 

151507 BayesSpace DSSC 0.283311661 0.322865463 0.345060618 

151507 Giotto DSSC 8.76033E-05 3.53207E-06 8.19187E-05 

151507 spaGCN DSSC 0.024437147 0.000562175 0.012315758 

151507 stLearn DSSC 7.54573E-08 3.32349E-10 1.06938E-08 

osmFish K-means + PCA DSSC 2.14806E-10 8.87443E-10 5.06215E-10 

osmFish SC3 DSSC 1.1814E-14 7.26523E-17 6.14065E-15 

osmFish Seurat DSSC 1.89863E-08 3.04302E-10 8.1556E-09 

osmFish BayesSpace DSSC 7.83113E-08 1.97529E-05 5.59584E-07 

osmFish Giotto DSSC 1.31499E-09 3.46474E-10 1.24645E-09 

osmFish spaGCN DSSC 4.02776E-05 1.06192E-05 3.74999E-05 

osmFish stLearn DSSC 7.13647E-10 3.29909E-10 3.02557E-09 
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Table E.3 Statistical Test of the Simulation Results with 20% Permutation 

Datasets Methods Methods Pval_AC Pval_NMI Pval_ARI 

151507 K-means + PCA DSSC 6.89168E-14 1.04625E-13 3.67873E-15 

151507 SC3 DSSC 1.78392E-15 2.81701E-18 7.01654E-16 

151507 Seurat DSSC 2.62682E-13 1.39264E-11 1.23138E-13 

151507 BayesSpace DSSC 0.10972168 0.277267626 0.214369712 

151507 Giotto DSSC 3.68703E-07 1.20838E-07 9.85883E-07 

151507 spaGCN DSSC 0.004347438 0.003294814 0.008378494 

151507 stLearn DSSC 3.32357E-10 1.7915E-10 6.27605E-11 

osmFish K-means + PCA DSSC 3.99819E-09 2.84669E-08 3.19154E-09 

osmFish SC3 DSSC 9.24393E-13 3.27959E-15 7.3741E-14 

osmFish Seurat DSSC 4.12662E-08 7.63717E-09 3.81263E-08 

osmFish BayesSpace DSSC 6.05709E-08 0.000359375 6.56227E-06 

osmFish Giotto DSSC 1.39367E-07 1.7724E-07 9.13902E-08 

osmFish spaGCN DSSC 1.19089E-05 1.21578E-05 2.37321E-05 

osmFish stLearn DSSC 1.26497E-07 5.1673E-08 2.28827E-07 

 
 
Table E.4 Statistical Test of the SpatialLIBD Data Results 

Method1 Method2 Pval_AC Pval_NMI Pval_ARI 

BayesSpace DSSC 0.003729 0.116339 0.008479 

spaGCN DSSC 2.29E-05 1.96E-06 0.000432 

stlearn DSSC 2.2E-07 4.66E-07 8.03E-06 

Seurat DSSC 9.73E-08 8.64E-08 7.82E-06 

K-means+PCA DSSC 1.98E-08 2.99E-08 2.69E-06 

SC3 DSSC 2.3E-05 7.28E-08 2.43E-06 

Giotto DSSC 3.43E-06 8.69E-08 7.66E-06 

 
 
Table E.5 Statistical Test of the 10xMBAD Data Results 

Methods1 Methods2 Pval-Silhouette 

spaGCN DSSC 0.211242658 

BayesSpace DSSC 0.476883153 

spatialPCA DSSC 0.002673712 

stlearn DSSC 0.000343514 

Seurat DSSC 0.032782218 

K-means+PCA DSSC 0.028644015 

SC3 DSSC 0.043526239 

Giotto DSSC 0.003877227 
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Table E.6 Statistical Test of the K (in kNN) Tuning Results 

kNN1 kNN2 Pval_AC Pval_NMI Pval_ARI 

10 0 0.00036644 7.1717E-07 6.872E-05 

20 0 0.00045065 1.5229E-06 0.0002041 

40 0 0.00070832 1.444E-06 0.00040561 

80 0 0.00032282 3.6124E-06 0.00053503 

160 0 0.00083513 7.4927E-06 0.00044418 

 
 
Table E.7 Statistical test of the Gamma (clustering loss) Tuning Results 

Gamma1 Gamma2 Pval_AC Pval_NMI Pval_ARI 

0.001 0 0.32270604 0.26621917 0.30667892 

0.01 0 0.01047752 0.00072134 0.00151559 

0.1 0 0.57586793 0.62270734 0.15635105 

1 0 0.94119189 0.92822479 0.8616268 

10 0 0.99289988 0.99766288 0.98608235 

 
 
Table E.8 Statistical Test of the Constraint Number Tuning Results 

Constraints1 Constraints2 Pval_AC Pval_NMI Pval_ARI 

2000 0 0.07327009 0.07467783 0.06374234 

4000 0 0.01695955 0.00296233 0.02178978 

6000 0 0.01707602 0.02126256 0.01863524 
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APPENDIX F 

SELECT MARKER GENES AS CONSTRAINTS FOR DSSC 

 

For the experiments on the SpatialLIBD dataset, we use the marker genes 

reported from the original paper of this dataset. Users can add other marker 

genes according to their prior knowledge or the aim of the study. Before using 

the marker genes, we suggest checking the spatial dependency and the filtered 

smoothed expression pattern of the genes. The figures below show a good 

marker and a bad marker, respectively.  

 

Figure F.1 The expression of a good marker gene in a single region or 
continuous regions (or only has low expression in a region, such as ENC1 in WM) 
(a) before smoothed by neighbors, (b) after smoothed by neighbors, (c) after 
filtered by a cutoff of expression, and (d) after filtered by the expression of 
neighbors. 
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Figure F.2 The expression of a poor marker gene in multiple regions (a) before 

smoothed by neighbors, (b) after smoothed by neighbors, (c) after filtered by a 

cutoff of expression, and (d) after filtered by the expression of neighbors. 
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