49 research outputs found

    Optimization of Fast-Decodable Full-Rate STBC with Non-Vanishing Determinants

    Full text link
    Full-rate STBC (space-time block codes) with non-vanishing determinants achieve the optimal diversity-multiplexing tradeoff but incur high decoding complexity. To permit fast decoding, Sezginer, Sari and Biglieri proposed an STBC structure with special QR decomposition characteristics. In this paper, we adopt a simplified form of this fast-decodable code structure and present a new way to optimize the code analytically. We show that the signal constellation topology (such as QAM, APSK, or PSK) has a critical impact on the existence of non-vanishing determinants of the full-rate STBC. In particular, we show for the first time that, in order for APSK-STBC to achieve non-vanishing determinant, an APSK constellation topology with constellation points lying on square grid and ring radius \sqrt{m^2+n^2} (m,n\emph{\emph{integers}}) needs to be used. For signal constellations with vanishing determinants, we present a methodology to analytically optimize the full-rate STBC at specific constellation dimension.Comment: Accepted by IEEE Transactions on Communication

    A Simplified Improvement on the Design of QO-STBC Based on Hadamard Matrices

    Get PDF
    yesIn this paper, a simplified approach for implementing QO-STBC is presented. It is based on the Hadamard matrix, in which the scheme exploits the Hadamard property to attain full diversity. Hadamard matrix has the characteristic that diagonalizes a quasi-cyclic matrix and decoding matrix that are diagonal matrix permit linear decoding. Using quasi-cyclic matrices in designing QO-STBC systems require that the codes should be rotated to reasonably separate one code from another such that error floor in the design can be minimized. It will be shown that, orthogonalizing the secondary codes and then imposing the Hadamard criteria that the scheme can be well diagonalized. The results of this simplified approach demonstrate full diversity and better performance than the interference-free QO-STBC. Results show about 4 dB gain with respect to the traditional QO-STBC scheme and performs alike with the earlier Hadamard based QO-STBC designed with rotation. These results achieve the consequent mathematical proposition of the Hadamard matrix and its property also shown in this study

    A phase feedback based extended space-time block code for enhancement of diversity

    Get PDF
    In this paper we propose a generalization of extended orthogonal space-time block codes (EO-STBCs) for MIMO (multi-input/multi-output) channels using four transmit antennas for quasi-static flat fading channels. Since full rate and complex orthogonal space-time block codes (STBCs) do not exist for more than two transmit antennas, we propose a feedback based STBC scheme. In this scheme, phases of certain symbols are rotated according to the feedback from the receiver which is equivalent to rotating the phases of the corresponding channel coefficients. Simulation results show that this rotation phase feedback method achieves a satisfactory performance and outperforms the previous closed-loop space-time block codes, even when the feedback is quantized

    Four-Group Decodable Space-Time Block Codes

    Full text link
    Two new rate-one full-diversity space-time block codes (STBC) are proposed. They are characterized by the \emph{lowest decoding complexity} among the known rate-one STBC, arising due to the complete separability of the transmitted symbols into four groups for maximum likelihood detection. The first and the second codes are delay-optimal if the number of transmit antennas is a power of 2 and even, respectively. The exact pair-wise error probability is derived to allow for the performance optimization of the two codes. Compared with existing low-decoding complexity STBC, the two new codes offer several advantages such as higher code rate, lower encoding/decoding delay and complexity, lower peak-to-average power ratio, and better performance.Comment: 1 figure. Accepted for publication in IEEE Trans. on Signal Processin

    Improved QC-STBC OFDM system using null interfeence elimination

    Get PDF
    YesThe quasi-orthogonal space time block coding (QO-STBC) over orthogonal frequency division multiplexing (OFDM) is investigated. Traditionally, QO-STBC does not achieve full diversity since the detection matrix of QO-STBC scheme is not a diagonal matrix. In STBC, the decoding matrix is a diagonal matrix which enables linear decoding whereas the decoding matrix in traditional QO-STBC does not enable linear decoding. In this paper it is shown that there are some interfering terms in terms of non-diagonal elements that result from the decoding process which limit the linear decoding. As a result, interference from the application of the QO-STBC decoding matrix depletes the performance of the scheme such that full diversity is not attained. A method of eliminating this interference in QO-STBC is investigated by nulling the interfering terms towards full diversity for an OFDM system. It was found that the interference reduction technique permits circa 2dB BER performance gain in QO-STBC. The theoretical and simulation results are presented, for both traditional QO-STBC and interference-free QO-STBC applying OFD
    corecore