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ABSTRACT – In this paper, a simplified approach for implementing 
QO-STBC is presented. It is based on the Hadamard matrix, in 
which the scheme exploits the Hadamard property to attain full 
diversity. Hadamard matrix has the characteristic that 
diagonalizes a quasi-cyclic matrix and decoding matrix that are 
diagonal matrix permit linear decoding. Using quasi-cyclic 
matrices in designing QO-STBC systems require that the codes 
should be rotated to reasonably separate one code from another 
such that error floor in the design can be minimized.  It will be 
shown that, orthogonalizing the secondary codes and then 
imposing the Hadamard criteria that the scheme can be well 
diagonalized. The results of this simplified approach demonstrate 
full diversity and better performance than the interference-free 
QO-STBC. Results show about 4 dB gain with respect to the 
traditional QO-STBC scheme and performs alike with the earlier 
Hadamard based QO-STBC designed with rotation. These results 
achieve the consequent mathematical proposition of the 
Hadamard matrix and its property also shown in this study. 

 
Keywords – Hadamard matrix, QO-STBC, full diversity 

 
I. INTRODUCTION 

One of the ways of achieving dependable broadband network 
in wireless communications systems is by the use of multiple 
input multiple output (MIMO) technology. MIMO technology 
is a transmission scheme that is used to transfer high data rate 
depending on the number of transmission branches 
(diversities). The commonest of all is the space-time block 
codes (STBC) for two transmit diversities discussed in [1]. 
This technique exploits full transmission power for orthogonal 
codes so long as the transmitter diversity order is no more than 
two [2, 3]. In transmissions involving more than two antennas, 
the full rate power is not attainable [1]. Beyond the two 
transmit diversity transmissions for full rate, the codes are 
rather formed in a special orthogonal way. The new codes are 
usually described as the quasi-orthogonal STBC (QO-STBC). 
Besides performing transmissions of more than two antennas, 
the QO-STBC also improves the channel capacity and also 
improves bit error ratio (BER) statistics for MIMO technology 
[3].  
 
The QO-STBC scheme [2, 4, 5] has been discussed to  achieve 
full transmission rate but not full diversity [6]. The BER 
curves suggest that the codes outperform the codes of 
orthogonal design only at low SNRs, but worsen at increased 
SNRs. This is due to the fact that the slope of the performance 
curve depends on the diversity order gain, i.e. whether full of 
partial diversity gain. One of the major problems that limit the 
BER performance of the QO-STBC system is from 
interference incurred in the decoding process. These 
interference terms are off-diagonal terms that violate the 
possibility of simple linear decoding such that full diversity is 

not achievable. It is believed that these interfering terms are 
removable by some methods [5-6]. Examples of common 
methods of eliminating these interfering terms to improve the 
QO-STBC codes performance towards full diversity have been 
discussed in [3, 6-9].  
 
For instance, the minimum distance between different 
codewords may reduce the likelihood of correctly decoding 
the right code. Hence, it is discussed that by properly choosing 
the constellations such that the minimum distance between the 
STBC codewords is increased, then the QO-STBC 
performance can be improved towards full diversity [6, 9, 10]. 
Some other common methods by which full diversity can be 
attained by interference reduction have been shown in [3, 7, 
8]. Most of these techniques have been presented for three and 
four transmit antennas QO-STBC designs.  
 
The Hadamard matrix has the ability to daigonalize quasi-
cyclic matrices [11, 12] and matrices are readily invertible if 
there are complex [10, 13]. These properties have been 
exploited in discussing QO-STBC systems based on 
Hadamard matrices in [7, 10].  In this work, the Hadamard 
based QO-STBC is extended. The base quasi-cyclic codes are 
rather formulated according to the space-time block codes 
design criteria earlier discussed in [1]. This design is shown 
for frequency flat fading channel using a QPSK mapping 
scheme. The Hadamard based QO-STBC studied is for three 
and four transmit diversities. Using the Hadamard matrix, it 
will be shown that the Hadamard based STBC maintains the 
orthogonality criteria with no interference. The resulting 
decoding matrix show perfect diagonal matrix with no off-
diagonal terms and results obtained agree with the ones earlier 
presented in [10] with optimal rotation. This optimal rotation 
is not used in this study.  

 
In Section II, the system model is described and then in 
Section III the Hadamard based STBC is presented. The 
numerical simulation results are compared with that of 
interference-free QO-STBC and the traditional orthogonal 
QO-STBC and ended with summarized conclusions. 

 
II. SYSTEM MODEL 

In this section, the applied system model is presented. Assume 
that there are NT transmit antennas and NR receive antennas. In 
addition, QO-STBC that encodes a vector of input symbols [g1 
g2 g3 … g2L] into G where TNLCG  is considered, such that 

TNLC  is a complex matrix, L is the block size. Let the 
channel impulse response be correlated such that multipath 
with k  phase that influences signal of k  amplitude exist. If 
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the transmission channel is flat, then k  will be uniform for 
all paths, K, where K is the number of all paths traversed by 
the signal. Consequently, the channel impulse response will be 

kjekkh  )()(  . For more than one transmit antenna such as 

TNi whose output is received by each j-antenna (j is 
equivalently 1 in this study), then; 
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The frequency response of Equation 2 becomes: 
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(3)  

If H describes the channel matrix, the transmit signal is G, 
then the received symbol will be [14]; 
 

Y = 
TN
 GH + Z 

 (4) 

where Z is the Gaussian noise term and G is the QO-STBC 
codeword matrix formed according to the approaches in [2, 5] 
also discussed in [7, 10]; 
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where NT is the maximum number of transmit antenna and N 
is the length of the input symbols. Notice that G TNNC   
matrix from code-word in Equation 5a. Notice that G is 
formed from the Alamouti space time coding method [1] as: 
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Such that in QO-STBC scheme, 
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 (5b) 

 
It is possible to decompose G into two such as G1 and G2 to 
permit maximum-likelihood decoding. This can be expressed 
in the following way [9]: 
 

G = G1(g1,0,g3,0) + G2(0,g2,0,g4)  
 
This is because, 01221  GGGG HH . 

The equivalent channel matrix of the above QO-STBC code 
(G) can be represented as: 





























*
1

2

*
3

4

*
2

*
3

*
4

143

*
4

*
1

*
2

321

h
h
h

h

hhh
hhh
hhh
hhh

H  

 
 
(6) 

 
The detection matrix can be formed as: 
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 (7) 

 
where λ is the diagonal of the (4 x 4)I4 matrix which is the sum 
of the channel power (or the path gains) and represented as

4,3,2,1,0,
1

2
  

nhTN
n n . Also, the second terms in 

the detection matrix, β, represents the interfering terms that 
deplete the full diversity performance expected of the 4-
transmit antenna elements and is computed as: 

42314231 hhhhhhhh   .Thus, β will degrade the BER 
(the pairwise error probability) performance of the system so 
long as the following decoding approach is followed and the 
full diversity will not be attained. 

III. HADAMARD BASED QO-STBC 

In this section, the traditional Hadamard based QO-STBC 
system is reviewed, then with the simplified Hadamard based 
QO-STBC approach following. The Hadamard matrices are 
described as matrices of 1’s and -1’s entries whose columns 
are orthogonal. It has the property that [13]; 
 

 n
H
n

H
nn HHHH nIn  (8) 

 
where In is an identity matrix for an n x n order which belongs 
to the channel gain. Equation 8 has the property that the 
channel gain is amplified n-times. Since the Hadamard matrix 
is defined for rem(n,4)=0, then in our case where n=4, the 
channel gain is amplified four times.  
 
Let the Hadamard matrix be thought of as being formed from 
the traditional orthogonal STBC codes. Then, recall the 
orthogonal codes of the channel matrix for a two transmitter 
system discussed in [15] as; 
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From Equation 9, the eigenvectors of the matrix can be given 
as; 
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By Equation 10 tradition, we further define eigenvectors for a 
4 transmit element (with one receiver) system as in [16] 
following Equation 10 as follows:  
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(11a) 

It is well-known that the codes that construct QO-STBC are 
not orthogonal, instead quasi-orthogonal. However, only the 
codes that construct the orthogonal STBC are orthogonal. We 
shall henceforth refer to Equation 11a as: 
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(11b) 

Meanwhile, the columns of the QO-STBC system hold 
orthogonal characteristics. Then by constructing an encoding 
matrix according to the Hadamard matrix yields QO-STBC 
systems whose decoding matrix is a diagonal matrix provided 
a proper quasi-cyclic Hadamard design is maintained. This 
explicitly eliminates any interfering terms (by default) so that 
exact full diversity will be achieved.  
 

A. Traditional Hadamard based QO-STBC 

The earlier design of QO-STBC based on Hadamard matrix 
like in [7] stemmed on quasi-cyclic matrix discussed in [11, 
12]. [7] described the QO-STBC for the quasi-cyclic 
Hadamard matrix as: 
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Equation 12 can be decomposed into two to permit maximum 
likelihood decoding according to [9] as follows: 

S = S1(s1,0,s3,0) + S2(0,s2,0,s4)  
 
This is because, 01221  SSSS HH  provided the orthogonal 
space-time block coding criteria discussed in [1] is satisfied. In 
the case of a Hadamard QO-STBC, the codewords belong to 
[10]; 
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Where, 
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Sometimes, the constellation ),( 43 ssS are rotated (see [10] 
and then [9]). This rotation is to increase the minimum 
separation between different received codewords which 
minimizes the error floor of received symbols and improves 
the BER performance statistics of the QO-STBC code. The 
channel matrix of Equation 12 is constructed similarly to the 
encoding matrix of Equation 12 except for changing symbols 
si to hi ∀݅ ∈ 1⋯4 in that case.  

In this work, we describe a Hadamard-based formulation of 
QO-STBC system whose decoding matrix is a diagonal matrix 
which would lead to linear decoding and has the form: 
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(14) 

 
If properly formulated, the encoding matrix which is usually 
complex and invertible must satisfy the condition 

 n
H
n

H
nn CCCC nIn where In is the identity of n × n matrix 

and the superscript, (.)H is the Hermitian transpose operator. 
Notice that n = 4 in this study. 
 

B. Simplified Hadamard based QO-STBC 

Now, let the formulation of the quasi-cyclic Hadamard codes 
for the channel matrix proceed in the following way: 
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And, 
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Instead of the combination that yielded Equation 12, let the 
orthogonal space time block coding reported in [1] be invoked 
such that: 
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Then, by multiplying the resulting codes of Equation 16 
according to the Hadamard matrix to form the new channel 
matrix, we obtain that: 
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This is equivalent to: 
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By applying Equation 8, it can be found that (remembering 
that Hv(Hv)H = nIn): 
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where 4,3,2,1,01

2
 nhN

n and 42314231 hhhhhhhh    
Notice that Equation 18 yields full diversity and is 4-times 
louder in amplitude compared to the interference-free QO-
STBC which is a diagonal matrix.  Notice also that the 
Hadamard property of Equation 8 defined as Hv(Hv)H = nIn is 
well satisfied. The equivalent encoding matrix can as well be 
easily formed. 
 
By nulling the fourth antenna element, a three-antenna scheme 
can be shown as: 
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Now, substituting Equation 19 into Equation 17: 
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Equivalent encoding matrix is easy to be formed. 
 

IV. NUMERICAL SIMULATION RESULTS AND DISCUSSION 

Using the Rayleigh fading channel model for a frequency non-
selective fading, we evaluate the performance of the proposed 
method with respected to the traditional QO-STBC along with 
the interference-free QO-STBC.  

 

Figure 1: Comparison of new QO-STBC with traditional QO-STBC and 
interference-free QO-STBC 

This performance is carried out for a QPSK system. In the 
study, it is assumed that the signal total transmit power for the 
respective three-transmit antenna and four transmit antenna 
systems were shared uniformly over the respective 
transmission branches for each case. During the transmission 
process, it is also assumed that, for three-transmit antennas 
that the scheme was quasi-static for three time slots and for 
four-transmit antennas, it was supposed that the system was 
constant for four-time slots. In Figure 1, the results are shown 
in terms of bit error ratio (BER). It is seen from the simulation 
results that the proposed method agrees with the mathematical 
proposition consequent on the Hadamard matrix property and 
is four-time louder than the interference-free QO-STBC. Also, 
the results are similar to the ones reported in [10]. This scheme 
provides the advantage of improved performance in 
comparison to interference reduction approach and reduced 
computation when compared to the rotation method discussed 
in [10].  

V. CONCLUSION 

A simplified method for implementing quasi-orthogonal space 
–time block codes has been presented. It followed from the 
earlier proposition from referred authors using quasi-cyclic 
Hadamard matrices. In the study, it was shown that Hadamard 
matrix diagonalizes the QO-STBC codes which permit linear 
decoding. This property paves way for achieving full 
diversity. The results obtained are consistent with the 
mathematical property and fully exploits full diversity 
advantage of the QO-STBC scheme. Consequently, the design 
of a QO-STBC system using the Hadamard matrix provides 
useful design advantage. 
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