3 research outputs found

    Realistic chipless RFID: identification and localization

    Get PDF
    Für die weitere Massenverbreitung von RFID Systemen ist ein günstiges und genaues Verfahren zur Objektlokalisierung und –verfolgung zwingend erforderlich. Chiplose RFID Systeme erlauben im Gegensatz zu herkömmlichen chipbehafteten RFID Systemen den Einsatz von einfachen, druckbaren RFID Tags, eine Möglichkeit zum Einstieg in die Ära von extrem billigen RFID Tags. Diese Dissertation konzentriert sich auf die Lösung von drei Herausforderungen bei der Erkennung von chiplosen RFID Tags innerhalb geschlossener Räume. Der erste in der vorliegenden Arbeit diskutierte Aspekt beschäftigt sich mit Methoden zum Eliminieren des Störechos der Umgebung (clutter removal techniques). Im chiplosen RFID System ist das Umgebungsstörecho definiert durch das von der Umgebung reflektierte Signal, das nicht mit dem RFID Tag interagiert. Die Stärke dieses Signals ist in jedem Fall größer als die des vom RFID Tag zurückgestrahlten (backscattered) Signals, was die Signaturerkennung des RFID Tags unmöglich macht. Zur Lösung dieses Problems schlage ich zwei Algorithmen vor. Der erste ist die Leerraum-Kalibrierung (empty room calibration). Bei diesem Algorithmus werden die Messungen mit RFID Tag von denen ohne RFID Tags abgezogen. Der zweite Algorithmus basiert auf dem Rake-Receiver unter Nutzung einer Zufallsfolge (PN sequence), er erfordert keine zusätzliche Kalibrierung. Der zweite Aspekt betrifft die Notch Erkennung und Identifikation, ein sehr wichtiger Bereich des chiplosen RFID Systems. Er ist dafür verantwortlich, die Notchs in Bits umzuwandeln. Für eine effektive Detektion werden Windowing (Fenster) Verfahren vorgeschlagen, wobei jedes Fenster einen oder auch keinen Notch beinhalten kann. Insgesamt drei neue Verfahren zur Notch Erkennung wurden implementiert. Als erstes ein Matched Filter (MF), in dem der einkommende Notch mit einem Referenz Notch verglichen wird. Das zweite Verfahren basiert auf einer gefensterten Singulärwertzerlegung, damit kann sowohl der Notch erkannt werden, als auch seine Bandbreite bestimmt werden. Als drittes Verfahren wird das dynamische Frequency Warping vorgestellt. Diese Technik nutzt nichtlineare um die Notche unddie Frequenzverschiebungen, die an den Notches auftreten, zu erkennen. Als dritter Aspekt wird die Lokalisierung der RFID Tags in dieser Dissertation diskutiert. Dazu werden zwei Algorithmen erklärt und implementiert. Der erste Algorithmus beruht auf der Triangulation durch drei getrennte RFID Lesegeräte, während sich der zweite die Position des RFID Tags aus der Signalstärke und dem Winkel des vom RFID Tag kommenden Signals berechnet. Alle genannten Algorithmen und Verfahren wurden in einer realen Innenraum Testumgebung mit RFID Tags und einer Software Defined Radio (SDR) Plattform vermessen, um die Zuverlässigkeit der Algorithmen unter normalen Bedingungen zu überprüfen.For mass deployment of RFID systems, cheap and accurate item level identification and tracking are profoundly needed. Fortunately, unlike conventional chip-based RFID, chipless RFID systems offers low-cost printable tags holding a better chance to enter the era of penny-cost tags. This dissertation concentrated on solving three challenges in the detection of the chipless tag inside an indoor environment. The first aspect discussed in the thesis are the chipless RFID clutter removal techniques. In chipless RFID the environmental clutter response is defined as the signal reflected from the environment, that does not interact with the tag. This signal has higher power than the backscattered signal from the tag, rendering the tag signature undetectable. Two algorithms to overcome this problem was used, the first is empty room calibration. The first algorithm is based on subtracting the measurement with the tag from the one without. The second algorithm is Rake receiver using PN sequence; this algorithm requires no pre-measurement calibration. The second aspect is notch detection and identification which is a critical part of the chipless system. This part is responsible for converting the notches into bits. For effective detection, a windowing operation is proposed, where each window may contain a notch or not. Three novel techniques are implemented to detect the notch. The first is matched filter were a reference notch is compared with the incoming signal. The second is window based singular value decomposition, where a constellation is created to detect not only the existence of a notch but also the bandwidth of the notch. The third notch detection technique is dynamic frequency warping. This technique utilizes non-linear warping to detect the notch and the frequency shifts that occurs on the notch. The third aspect discussed in the thesis is tag localization. In this aspect, two algorithms are implemented and explained. The first is trilateration which requires three different readers. The second localization algorithm exploits received signal strength and angle of arrival to detect the location of the tag accurately. All the algorithms were tested using a real testbed to validate the reliability of the techniques. The measurements were done using fabricated tags in an indoor environment using Software Defines Radio (SDR)

    Design of an Ultra-wideband Radio Frequency Identification System with Chipless Transponders

    Get PDF
    The state-of-the-art commercially available radio-frequency identification (RFID) transponders are usually composed of an antenna and an application specific integrated circuit chip, which still makes them very costly compared to the well-established barcode technology. Therefore, a novel low-cost RFID system solution based on passive chipless RFID transponders manufactured using conductive strips on flexible substrates is proposed in this work. The chipless RFID transponders follow a specific structure design, which aim is to modify the shape of the impinged electromagnetic wave to embed anidentification code in it and then backscatter the encoded signal to the reader. This dissertation comprises a multidisciplinary research encompassing the design of low-cost chipless RFID transponders with a novel frequency coding technique, unlike usually disregarded in literature, this approach considers the communication channel effects and assigns a unique frequency response to each transponder. Hence, the identification codes are different enough, to reduce the detection error and improve their automatic recognition by the reader while working under normal conditions. The chipless RFID transponders are manufactured using different materials and state-of-the-art mass production fabrication processes, like printed electronics. Moreover, two different reader front-ends working in the ultra-wideband (UWB) frequency range are used to interrogate the chipless RFID transponders. The first one is built using high-performance off-theshelf components following the stepped frequency modulation (SFM) radar principle, and the second one is a commercially available impulse radio (IR) radar. Finally, the two readers are programmed with algorithms based on the conventional minimum distance and maximum likelihood detection techniques, considering the whole transponder radio frequency (RF) response, instead of following the commonly used approach of focusing on specific parts of the spectrum to detect dips or peaks. The programmed readers automatically identify when a chipless RFID transponder is placed within their interrogation zones and proceed to the successful recognition of its embedded identification code. Accomplishing in this way, two novel fully automatic SFM- and IRRFID readers for chipless transponders. The SFM-RFID system is capable to successfully decode up to eight different chipless RFID transponders placed sequentially at a maximum reading range of 36 cm. The IR-RFID system up to four sequentially and two simultaneously placed different chipless RFID transponders within a 50 cm range.:Acknowledgments Abstract Kurzfassung Table of Contents Index of Figures Index of Tables Index of Abbreviations Index of Symbols 1 Introduction 1.1 Motivation 1.2 Scope of Application 1.3 Objectives and Structure Fundamentals of the RFID Technology 2.1 Automatic Identification Systems Background 2.1.1 Barcode Technology 2.1.2 Optical Character Recognition 2.1.3 Biometric Procedures 2.1.4 Smart Cards 2.1.5 RFID Systems 2.2 RFID System Principle 2.2.1 RFID Features 2.3 RFID with Chipless Transponders 2.3.1 Time Domain Encoding 2.3.2 Frequency Domain Encoding 2.4 Summary Manufacturing Technologies 3.1 Organic and Printed Electronics 3.1.1 Substrates 3.1.2 Organic Inks 3.1.3 Screen Printing 3.1.4 Flexography 3.2 The Printing Process 3.3 A Fabrication Alternative with Aluminum or Copper Strips 3.4 Fabrication Technologies for Chipless RFID Transponders 3.5 Summary UWB Chipless RFID Transponder Design 4.1 Scattering Theory 4.1.1 Radar Cross-Section Definition 4.1.2 Radar Absorbing Material’s Principle 4.1.3 Dielectric Multilayers Wave Matrix Analysis 4.1.4 Frequency Selective Surfaces 4.2 Double-Dipoles UWB Chipless RFID Transponder 4.2.1 An Infinite Double-Dipole Array 4.2.2 Double-Dipoles UWB Chipless Transponder Design 4.2.3 Prototype Fabrication 4.3 UWB Chipless RFID Transponder with Concentric Circles 4.3.1 Concentric Circles UWB Chipless Transponder 4.3.2 Concentric Rings UWB Chipless RFID Transponder 4.4 Concentric Octagons UWB Chipless Transponders 4.4.1 Concentric Octagons UWB Chipless Transponder Design 1 4.4.2 Concentric Octagons UWB Chipless Transponder Design 2 4.5 Summary 5. RFID Readers for Chipless Transponders 5.1 Background 5.1.1 The Radar Range Equation 5.1.2 Range Resolution 5.1.3 Frequency Band Selection 5.2 Frequency Domain Reader Test System 5.2.1 Stepped Frequency Waveforms 5.2.2 Reader Architecture 5.2.3 Test System Results 5.3 Time Domain Reader 5.3.1 Novelda Radar 5.3.2 Test System Results 5.4 Summary Detection of UWB Chipless RFID Transponders 6.1 Background 6.2 The Communication Channel 6.2.1 AWGN Channel Modeling and Detection 6.2.2 Free-Space Path Loss Modeling and Normalization 6.3 Detection and Decoding of Chipless RFID Transponders 6.3.1 Minimum Distance Detector 6.3.2 Maximum Likelihood Detector 6.3.3 Correlator Detector 6.3.4 Test Results 6.4 Simultaneous Detection of Multiple UWB Chipless Transponders 6.5 Summary System Implementation 7.1 SFM-UWB RFID System with CR-Chipless Transponders 7.2 IR-UWB RFID System with COD1-Chipless Transponders 7.3 Summary Conclusion and Outlook References Publications Appendix A RCS Calculation Measurement Setups Appendix B Resistance and Skin Depth Calculation Appendix C List of Videos Test Videos Consortium Videos Curriculum Vita

    Realistic chipless RFID: protocol, encoding and system latency

    Get PDF
    Chiplose Identifikation über Funkfrequenzen, RFID (engl., Radio Frequency IDentification) ist eine vielversprechende Technology, der man die Fähigkeit zuschreibt, in naher Zukunft den optischen Barcode zu ersetzen. Letztgenannter hat Einschränkungen durch i) RFID Tags sind bei nicht vorhandener Sichtverbindung (engl. Non-Line-Of-Sight, NLOS) auch nicht lesbar; ii) das Scannen der Barcodes benötigt in den meisten Fällen manuelles Eingreifen; iii) es ist unmöglich mehrere Barcodes gleichzeitig auszulesen; iv) und als Folge davon entsprechende Verzögerungen beim Auslesen größerer Mengen von Barcodes, da alle einzeln gescannt werden müssen. Die Beiträge der vorliegenden Dissertation konzentrieren sich auf drei Schwerpunkte von frequenzcodierten (engl. frequency coded, FC) chiplosen RFID Systemen. Der erste Schwerpunkt ist die gleichzeitige Identifikation von mehreren RFID Tags und kümmert sich um den Fall, dass sich mehrere RFID Tags in der Lesezone des RFID Lesegerätes befinden. Der zweite Aspekt betrifft die Verzögerung des Systems, die Zeit, das Lesegerät zum Identifizieren der RFID Tags benötigt. Und drittens die Coding Kapazität des Systems, sie ist verantwortlich für die zu erreichende Bittiefe des RFID Systems. Ein real umsetzbares RFID System erfordert Lösungen in allen drei Aspekten. Da chiplose RFID Tags keine integrierten Schaltungen (ICs) und somit auch keine Speicherbausteine besitzen, ist die Anzahl der auf dem RFID Tag speicherbaren Bits begrenzt. Und als Folge davon sind die Standards und Protokolle, die für die herkömmlichen chipbehafteten RFID Systeme entwickelt worden, nicht auf chiplose RFID Systeme übertragbar. Das wesentliche Ziel des ersten Beitrages ist die Einführung eines neuen Multi-Tag Antikollisionsprotokolls, das auf der Modulation der Notchposition (engl. Notch Position Modulation, NPM) und Tabellen (engl. Look-Up-Table, LUT) zur Bestimmung der Netzwerk- und MAC- Layer des chiplosen RFID Systems basiert. Die erste Generation der vorgeschlagenen Protokolls (Gen-1) baut auf einer Zweiteilung des zur Verfügung stehenden Spektrums auf. Im unteren Frequenzbereich, als Präambel Bandbreite bezeichnet, wird jedem RFID Tag seine individuelle Frequenzverschiebung übermittelt und im zweiten Bereich, der sogenannten Frame Bandbreite, ist die Identifikationsnummer (ID) des RFID Tags hinterlegt. Mit dieser Anordnung lässt sich jegliche Interferenz zwischen den verschiedenen RFID Tags unterbinden, da sich die Antworten der RFID Tags nicht gegenseitig überlagern. Die zweite Generation dieses Protokolls bringt eine Verbesserung sowohl bei der Coding Kapazität als auch bei der Nutzung des zur Verfügung stehenden Frequenzspektrums. Dies wird dadurch erreicht, dass die ID des RFID in einer Tabelle im Lesegerät gespeichert wird. Die individuelle Frequenzverschiebung dient dabei als Adresse für die gespeicherten IDs. Dieser Schritt vereinfacht die Komplexität der Struktur des RFID Tags signifikant, während gleichzeitig die Erkennungswahrscheinlichkeit erhöht wird. Des Weiteren werden die Key Performance Indikatoren untersucht um die Leistungsfähigkeit der Protokolle zu beweisen. Beide Protokollversionen werden modelliert und in einer Umgebung mit 10 chiplosen RFID Tags simuliert, um die Randbedingungen für die Entwicklung der RFID Tags und des RFID Lesegerätes zu ermitteln. Außerdem wird eine neuartige Testumgebung für ein MultiTag Ultra Breitband (engl. ultra wideband UWB) RFID System unter realen Testbedingungen basierend auf einem Software Defined Radio (SDR) Ansatz entwickelt. In dieser Testumgebung werden sowohl die gesendeten Signal als auch Detektierungstechniken, Leerraum Kalibrierung zur Reduzierung der Streustrahlung und die Identifikationsprotokolle untersucht. Als zweiter Schwerpunkt dieser Arbeit werden neue Techniken zur Reduzierung der Systemlaufzeit (engl. System Latency) eingeführt. Das Ziel dabei ist, die Zeit, die das RFID Lesegerät zum Erkennen aller in Lesereichweite befindlichen chiplosen FC RFID Tags braucht, zu verkürzen. Der Großteil der Systemlaufzeit wird durch das gewählte Frequenzscanverfahren, durch die Anzahl der Mittelungen zur Eliminierung der umgebenden Streustrahlung und durch die Dauer eines Frequenzsprungs bestimmt. In dieser werden dazu ein adaptives Frequenzsprungverfahren (engl. adaptive frequency hopping, AFH) sowie ein Verfahren Mittels adaptiver gleitender Fensterung (engl. adaptive sliding window, ASW) eingeführt. Das ASW Verfahren ist dabei im Hinblick auf die Identifizierung der RFID Tags nach dem Gen-1 Protokoll entwickelt, da es ein gleitendes Fenster zur Detektierung der Notches mit einer variablen Breite zum Auslesen der ID erfordert. Im Gegensatz dazu wird das Auffinden der im Gen-2 Protokoll verwendeten Notchpattern durch das AFH Verfahren verbessert. Dies wird über variable Frequenzsprünge, die auf die jeweiligen Notchpattern optimiert werden, erreicht. Beide Verfahren haben sich als effektiv sowohl im Hinblick auf die Systemlaufzeit als auch auf die Genauigkeit erwiesen. Das ASW und das AFH Verfahren wurden dazu in der oben erwähnten Testumgebung implementiert und mit dem klassischen Frequenzsprungverfahren, feste feingraduierte Frequenzschritte, verglichen. Die Experimente haben gezeigt, dass das vorgeschlagene AFH Verfahren in Kombination mit ASW zu einer beachtlichen Reduzierung der Systemlaufzeit von 58% führen. Das Ziel des dritten Schwerpunkts dieser Arbeit ist die Einführung einer neuartigen Technik zur Erhöhung der Informationsdichte (engl. Coding capacity) in einem chiplosen FC RFID Systems. Die hierfür vorgeschlagene Modulation der Notchbreite (engl. notch width modulation, NWM) ermöglicht die Kodierung von 4 Bits (16 Zuständen) pro Resonator in dem die Notchbreite und die dazugehörige Frequenzlage ausgenutzt werden. Für jeden Notch werden 150MHz Bandbreite reserviert, innerhalb derer das Codebit durch eine bestimmte Bandbreiten an unterschiedlichen Frequenzen bestimmt wird Cj ( fk,Bl). Das bedeutet, bei einer Arbeitsfrequenz im Bereich von 2–5 GHz können so 80 Bits realisiert werden. Des Weiteren wurde eine smarte Singulärwertzerlegung (engl. smart singular value decomposition, SSVD) Technik entwickelt, um die Notchbreite zu ermitteln und eine geringe Fehlerwahrscheinlichkeit zu garantieren. Die Nutzung von Blockcodes zur Behebung von Fehlern wurde untersucht, um den größtmöglichen Nutzen aus der so gewonnene Bittiefe zu erzielen. Als Folge konnte eine große Bittiefe mit einer hohen Lesegenauigkeit bei vereinfachtem Aufbau des Lesegeräts erzielt werden. Außerdem wurde eine neuartige RFID Tag Struktur entworfen, die bei einer Größe von 4× 5 cm2 eine Codedichte von 4 Bits/cm2 erreicht. Verschiedene RFID Tag Konfigurationen wurden erstellt und das neu eingeführte Codierungsverfahren mit Hilfe von elektromagnetischen (EM) Simulation und der bereits erwähnten Testplattform überprüft. Die erzielten Ergebnisse ermöglichen ein widerstandsfähiges RFID System in einer realen Umgebung. Alle vorgeschlagenen Beiträge sind durch analytische Modelle, Simulationen und Messungen auf mögliche Probleme und die Grenzen einer Realisierung unter realistischen Bedingungen geprüft worden.Chipless Radio Frequency IDentification (RFID) is a promising technology predicted to replace the optical barcode in the near future. This is due to several problematic issues i) the barcode cannot read Non-Line-Of-Sight (NLOS) tags; ii) each barcode needs human assistance to be read; iii) it is impossible to identify multiple tags at the same time; and iv) the considerable time delay in case of massive queues because different types of objects need to be serially scanned. The contributions included in this dissertation concentrate on three main aspects of the Frequency Coded (FC) chipless RFID system. The first one is the multi-tag identification, which deals with the existence of multiple tags in the reader’s interrogation region. The second aspect is the system latency that describes the time the reader needs to identify the tags. Finally, there is the coding capacity that is responsible for designing a chipless tag with larger information bits. The aim of these aspects is to realize a chipless RFID system. Since the chipless tags are memoryless as they do not include Integrated Circuits (ICs), the number of bits to be stored in the chipless tag is limited. Consequently, the current RFID standards and protocols designed for the chipped RFID systems are not applicable to the chipless systems. The main objective of the first contribution is to introduce novel multi-tag anti-collision protocols based on Notch Position Modulation (NPM) and Look-Up-Table (LUT) schemes determining the network and MAC layers of the chipless RFID systems. The first generation of the proposed protocol (Gen-1) relies on dividing the spectrum into two parts; the first one is the preamble bandwidth that includes a unique frequency shift for each tag. The second part is the frame bandwidth which represents the tag ID. The tag ID is obtained based on the predefined frequency positions, making use of the unique frequency shift. Consequently, the interference is avoided as there will not be any overlap between the tags’ responses. The second generation of the protocol (Gen-2) introduces an improvement in the spectrum utilization and coding capacity. This is realized by transferring the tag-ID to be stored in a table in the main memory of the reader (look-up-table). The unique shift of each tag represents the address of the tag’s ID. Therefore, the complexity of the tag structure will be significantly reduced with an enhanced probability of detection. Furthermore, the key performance indicators for the chipless RFID system are explored to validate the protocol’s performance. Both protocols are modeled and simulated to identify 10-chipless tags in order to set the regulations of the tag and reader design. Moreover, a novel real-world testbed for a multi-tag Ultra Wideband (UWB) chipless RFID system based on Software Defined Radio (SDR) is introduced. In this testbed, all the signaling schemes related to the transmitted signal, the detection techniques, the empty room calibration for the clutter removal process, and the identification protocols are applied. The aim of the second aspect is to introduce novel techniques that reduce the time required by the reader to identify the FC chipless RFID tags existent in the reader’s interrogation region. This time delay is called system latency. The main parameters that significantly affect the overall system latency are the frequency scanning methodology, the number of spectrum scanning iterations for the clutter removal process, and the hop duration. Therefore, the Adaptive Frequency Hopping (AFH) and the Adaptive Sliding Window (ASW) methodologies are proposed to meet the requirements of the FC chipless RFID tags. Regarding the ASW technique, it is suitable to identify the tags using the Gen-1 protocol which utilizes a sliding window (for detecting the notch) with an adaptive size to extract the tag’s-ID. The second adaptive methodology, AFH, can identify the tags with the Gen-2 protocol by using a variable frequency step that fits the corresponding notch patterns. These techniques are proven to be efficient for the chipless RFID systems with regard to latency and accuracy. Likewise, the designed AFH and ASW technique’s performance is compared to the classical Fixed Frequency Hopping (FFH) methodology with a fine frequency step to validate the accuracy of the proposed techniques. A real-world SDR based testbed is designed and the proposed adaptive algorithms as well as the classical FFH methodology are implemented. The experiments show that the proposed AFH combined with the ASW algorithms significantly reduce the system latency by 58%. The goal of the third aspect is to introduce a novel technique that increases the coding capacity of the FC chipless RFID system. The proposed Notch Width Modulation (NWM) scheme encodes 4 bits (16-combinations) per single resonator exploiting the notch bandwidth and its corresponding frequency position. Furthermore, each notch can reserve a window with a bandwidth of 150 MHz and inside this window the notch can obtain a certain bandwidth with a specific resonant frequency constructing the coding pairs Cj ( fk,Bl). Hence, 80-bits could be achieved at the operating frequency 2–5 GHz, preserving the operating frequency bandwidth. Also, a Smart Singular Value Decomposition (SSVD) technique is designed to estimate the notch bandwidth and to ensure a low probability of error. In addition, the utilization of a linear block code as an error correcting code is explored to make the best use of the obtained coding gain. Consequently, a high encoding efficiency and an accurate detection can be achieved in addition to a simplified reader design. Moreover, a novel 4× 5 cm2 tag structure is designed to meet the requirements of the NWM coding technique achieving a coding density of 4 bits/cm2. Different tag configurations are manufactured and validated by measurements using the SDR platform. The introduced coding methodology is conclusively validated using Electromagnetic (EM) simulations and real-world testbed measurements. The considered achievements for the proposed aspects offer a robust chipless RFID system that can be considered in real scenarios. Furthermore, all the proposed contributions are validated using analytical modeling, simulation and measurements in order to list their difficulties and limitations
    corecore