156,067 research outputs found
Impact of receiver reaction mechanisms on the performance of molecular communication networks
In a molecular communication network, transmitters and receivers communicate
by using signalling molecules. At the receivers, the signalling molecules
react, via a chain of chemical reactions, to produce output molecules. The
counts of output molecules over time is considered to be the output signal of
the receiver. This output signal is used to detect the presence of signalling
molecules at the receiver. The output signal is noisy due to the stochastic
nature of diffusion and chemical reactions. The aim of this paper is to
characterise the properties of the output signals for two types of receivers,
which are based on two different types of reaction mechanisms. We derive
analytical expressions for the mean, variance and frequency properties of these
two types of receivers. These expressions allow us to study the properties of
these two types of receivers. In addition, our model allows us to study the
effect of the diffusibility of the receiver membrane on the performance of the
receivers
Level Crossing Rate of Macrodiversity System in the Presence of Multipath Fading and Shadowing
Macrodiversity system including macrodiversity SC receiver and two microdiversity SC receivers is considered in this paper. Received signal experiences, simultaneously, both, long term fading and short term fading. Microdiversity SC receivers reduces Rayleigh fading effects on system performance and macrodiversity SC receiver mitigate Gamma shadowing effects on system performance. Closed form expressions for level crossing rate of microdiversity SC receivers output signals envelopes are calculated. This expression is used for evaluation of level crossing rate of macrodiversity SC receiver output signal envelope. Numerical expressions are illustrated to show the influence of Gamma shadowing severity on level crossing rate
Extended master equation models for molecular communication networks
We consider molecular communication networks consisting of transmitters and
receivers distributed in a fluidic medium. In such networks, a transmitter
sends one or more signalling molecules, which are diffused over the medium, to
the receiver to realise the communication. In order to be able to engineer
synthetic molecular communication networks, mathematical models for these
networks are required. This paper proposes a new stochastic model for molecular
communication networks called reaction-diffusion master equation with exogenous
input (RDMEX). The key idea behind RDMEX is to model the transmitters as time
series of signalling molecule counts, while diffusion in the medium and
chemical reactions at the receivers are modelled as Markov processes using
master equation. An advantage of RDMEX is that it can readily be used to model
molecular communication networks with multiple transmitters and receivers. For
the case where the reaction kinetics at the receivers is linear, we show how
RDMEX can be used to determine the mean and covariance of the receiver output
signals, and derive closed-form expressions for the mean receiver output signal
of the RDMEX model. These closed-form expressions reveal that the output signal
of a receiver can be affected by the presence of other receivers. Numerical
examples are provided to demonstrate the properties of the model.Comment: IEEE Transactions on Nanobioscience, 201
A nonlinear-coherence receiver
Mathematical analysis and detailed study of generic model for coherent receiver has demonstrated that nonlinear coherence between given biphase-modulated input signal and supplied reference signal can be used in receivers to improve telecommunication systems
Signal estimation in cognitive satellite networks for satellite-based industrial internet of things
Satellite industrial Internet of Things (IIoT) plays an important role in industrial manufactures without requiring the support of terrestrial infrastructures. However, due to the scarcity of spectrum resources, existing satellite frequency bands cannot satisfy the demand of IIoT, which have to explore other available spectrum resources. Cognitive satellite networks are promising technologies and have the potential to alleviate the shortage of spectrum resources and enhance spectrum efficiency by sharing both spectral and spatial degrees of freedom. For effective signal estimations, multiple features of wireless signals are needed at receivers, the transmissions of which may cause considerable overhead. To mitigate the overhead, part of parameters, such as modulation order, constellation type, and signal to noise ratio (SNR), could be obtained at receivers through signal estimation rather than transmissions from transmitters to receivers. In this article, a grid method is utilized to process the constellation map to obtain its equivalent probability density function. Then, binary feature matrix of the probability density function is employed to construct a cost function to estimate the modulation order and constellation type for multiple quadrature amplitude modulation (MQAM) signal. Finally, an improved M 2 M ∞ method is adopted to realize the SNR estimation of MQAM. Simulation results show that the proposed method is able to accurately estimate the modulation order, constellation type, and SNR of MQAM signal, and these features are extremely useful in satellite-based IIoT
Optimum frequency modulation receivers
Optimization of receivers for demodulating FM SIGNAL corrupted by Gaussian noise, and solution to maximum likelihood equatio
Recommended from our members
A Technique for Determining the Carrier Phase Differences between Independent GPS Receivers during Scintillation
A method for recovering the carrier phase differences between
pairs of independent GPS receivers has been developed
and demonstrated in truth-model simulations. This
effort is in support of a project that intends to image the disturbed
ionosphere with diffraction tomography techniques
using GPS measurements from large arrays of receivers.
Carrier phase differential GPS techniques, common in surveying
and relative navigation, are employed to determine
the phase relationships between the receivers in the imaging array. Strategies for estimating the absolute carrier phase
disturbances at each receiver are discussed. Simulation results
demonstrate that the system can rapidly detect the onset
of scintillation, identify one non-scintillating reference
signal, and recover the carrier phase differences accurate to
0.1 cycles.Aerospace Engineering and Engineering Mechanic
Monitoring induced distributed double-couple sources using Marchenko-based virtual receivers
We aim to monitor and characterize signals in the subsurface by combining
these passive signals with recorded reflection data at the surface of the
Earth. To achieve this, we propose a method to create virtual receivers from
reflection data using the Marchenko method. By applying homogeneous Green's
function retrieval, these virtual receivers are then used to monitor the
responses from subsurface sources. We consider monopole point sources with a
symmetric source signal, where the full wavefield without artefacts in the
subsurface can be obtained. Responses from more complex source mechanisms, such
as double-couple sources, can also be used and provide results with comparable
quality as the monopole responses. If the source signal is not symmetric in
time, our technique that is based on homogeneous Green's function retrieval
provides an incomplete signal, with additional artefacts. The duration of these
artefacts is limited and they are only present when the source of the signal is
located above the virtual receiver. For sources along a fault rupture, this
limitation is also present and more severe due to the source activating over a
longer period of time. Part of the correct signal is still retrieved, as well
as the source location of the signal. These artefacts do not occur in another
method which creates virtual sources as well as receivers from reflection data
at the surface. This second method can be used to forecast responses to
possible future induced seismicity sources (monopoles, double-couple sources
and fault ruptures). This method is applied to field data, where similar
results to synthetic data are achieved, which shows the potential for the
application on real data signals
- …
