
Technical Report

T-B

Prepared for

National Aeronautics & Space Administration

Electronics Research Center

Under

NASA GRANT NGR- 33- 006- 02 0

Prepared by

Allan Guida, Research Fellow

Donald L. Schilling, Associate Professor

Department of Electrical Engineering

Polytechnic Institute of Brooklyn

https://ntrs.nasa.gov/search.jsp?R=19670023386 2020-03-12T11:13:43+00:00Z



ABSTRACT

The maximum likelihood equation for demodulating an FM signal

corrupted by additive gaussian noise is derived and examined. Asymptotic

formulae for the signal-to-noise ratio of the maximum likelihood estimate

are calculated for high carrier-to-noise ratio and infinite observation

time. The results show that the FM discriminator is approximately

equivalent to the maximum likelihood estimator at high carrier-to-noise

ratios. An iterative method for solving the maximum likelihood equation

at any carrier-to-noise ratio is presented. The method consists of

generating a sequence of test solutions by varying the parameter E in the

following equation:

Test Solution = Approximate Solution +

E [ Solution error due to the Approximate

Solution]

where the solution error is defined as the error produced by substituting

the approximate solution in the maximum likelihood equation. For each

value of g, the likelihood function of the associated test solution is

evaluated; the test solution for which the likelihood function is a maximum

replaces the approximate solution and the process is repeated. Computer

evidence of the convergence of the series of approximate solutions to a

solution with high likelihood is presented.

It is noted that the difference between optimum FM receivers and

non-optimum FM receivers (FM discriminator, phase-locked loop, FM

with feedback) lies mainly in the number of spikes per second present in

the output of these receivers. The problem of spike detection is considered

and a spike detector is designed for an FM discriminator. Computer



results on the capability of the spike detector are presented.

Two simple FM receivers are analyzed using appropriate auto-

correlation functions and spectral densities. The results are compared

to the FM discriminator.
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Chapter 1

Introduction

1.1 Statement of the problem

The problem of designing optimum receivers for demodulating analog

signals subject to additive gaussian noise has been handled satisfactorily in

the case of linear modulation (AM) but the cases of nonlinear modulation

(FM, PM) are still, for the most part, unsolved. (Numerous articles have been

written on the PLL and FMFB but none of the designs lead to devices which

are optimum in some commonly accepted sense (least mean square error

or minimum variance (MV) maximum likelihood (ML), etc. ). Some may,

in actuality, be very close to optimum devices, but this fact has not yet

been demonstrated). In order to extend the present knowledge of optimum FM

reception, the ML estimator for FM will be investigated. The primary

objective will be the solution of the ML equation for FM. In addition, the

output signal-to-noise power ratio obtainable with the ML estimator at high

input carrier-to-noise power ratios will be examined.

An alternate approach to the optimization problem is to consider those

characteristics of the present receivers (particularly FM receivers) which

make them sub-optimum. It can be shown (1.9) that the difference lies mainly

in the number of "spikes" present in the output of FM receivers. These spikes

are sharp pulses present in the unfiltered FM receiver output noise. When

we examine the outputs of FM receivers, those with a smaller mean square

error have fewer spikes. Theoretically, there must be some maximum

number of spikes which can be detected and removed_ the corresponding FM

receiver would then be optimum in a spike detection sense. The spike

detection approach will be investigates by designing a spike detection and

correction system for an FM receiver.

A third approach to the optimization problem is to examine various FM
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receivers which can be completely analyzed to determine those characteristics

which tend to improve output signal-to-noise power ratio. Two elementary

FM receivers will be examined.

1. Z Summary of prior work

The first step toward solving the problem of designing an optimum PM

receiver was made by Lehan and Parks (1. 1) in 19 53, when they considered

the problem from the point of view of statistical estimation theory. Unfor-

tunately, the mathematics presented in their paper is not clear enough for a

complete understanding of their work, although the equations they derive

appear to be correct. In 19 54 Youla (1. Z) placed their work on a firm mathe-

matical basis. He derived a pair of non-linear integral equations whose

solution is the ML estimate of the modulation in the PM case. Subsequently

in' 1964, Becket and Lawton (1.3) extended the results to the FM case, again

reducing the problem to one of solving a pair of non-linear integral equations.

In 1964, Schwartz (1.4) demonstrated that the Youla equations could be derived

using vector space concepts, which simplified the derivation considerably.

However, in none of these studies did the authors show how to

solve the integral equations, other than to state that the equations closely

resembled the phase-locked loop. In 1963, Van Trees (1.5) suggested

an iterative technique for solving the equations in the white noise case

where the two equations can be reduced to a single equation. However,

this technique has never been successfully demonstrated.

The alternate approach to the optimum FM receiver problem,

i.e., spike detection, was first investigated experimentally by Schilling

(1.6) in 1966_ Schilling designed a spike detector for an FSK system

based on the facts demonstrated by Rice (1.7) in 1963. However, no

other work appears to have been done in the area of spike detection.
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1.3 Summary of results obtained

The SNR at the output of the linearized ML estimator for FM

was evaluated for high CNR and it was found that the result is the same

as for the FM discriminator. The difference between the two devices lies

entirely in the number of spikes present in their respective outputs, which

represents a minor contribution to the noise power at high CNR. Thus,

we conclude that the FM discriminator is nearly an optimum receiver for

analog FM signals at high CNR. It should be noted that for digital signals,

where the probability of error is a more significant quantity than the SNR,

spike noise cannot be neglected and the FM discriminator is a poor

approximation to an optimum receiver even at high CNR.
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Van Trees' (1.5) simple iteration procedure for solving the ML

equation was improved upon by employing an additional function called

the likelihood function, which provides a measure of the likelihood of a

test solution. The new procedure consists of generating a sequence of

test solutions by varying the parameter _ in the following equation:

Test Solution = Approximate Solution + e-[Solution error due to

the Approximate Solution]

where the solution error is defined as the error produced by substituting

the approximate solution in the ML equation. For each value of ¢ selected,

the likelihood function of the associated test solution is evaluated; the test

solution for which the likelihood function is a maximum replaces the ap-

proximate solution. The solution error and the integrated absolute value

of the solution error (called the total solution error) are evaluated and

the process is repeated. When the total solution error goes below some

preset value, the process stops. Otherwise, the process is stopped after

a preset number of iterations. The last test solution is then an approxi-

mate solution to the ML equation.

There are several advantages obtained with the new process:

1. The process can be used at any CNR. [The simple iteration

procedure is limited to low CNR].

2. The process requires fewer iterations than the simple iteration

procedure; however, the iterations in the new process are more complex.

3. The computer time required for this process should be less

than the simple iteration computer time when the initial test solution is

far from the final solution because this process can accept large test

solution increments without diverging.
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4. The likelihood associated with the solution found by this process

must be greater than or equal to the likelihood of the solution found by the

simple iteration process. It has not been demonstrated, however, that

the solution obtained is the absolute maximum likelihood solution.

A computer simulation of the process for solving the ML equation

provided evidence that the technique leads to a convergent series of ap-

proximate solutions. A number of sequences of signal and noise values

were tested and the SNR-CNR results were plotted on a graph along with

the asymptotic SNR-CNR curves. However, an attempt to measure the

threshold of the ML estimator was unsucessful because the amount of com-

puter time required to perform this task was found to be excessive.

In the area of spike detection, a technique was developed which

permitted spike detection to be applied to an analog FM system. For a

particular CNR and _, and with sinewave modulation, a system was developed

which was capable of detecting 57% of the spikes at the output of an FM dis-

criminator. The basic technique used was to measure the difference between

the short term and long term averages of the discriminator output and look for

large values of this difference, indicating the presence of a large disturbance of

short duration (a possible spike).

In an attempt to learn more about various explicit functions of

FM data which, when filtered, lead to FM receivers, two simple cases

were analyzed. The results indicated that the receivers were not op-

timum but it was interesting to compare them to the discriminator.

1.4 Definitions and approximations

The FM signal, S(t), is defined by the equation
t"

S(t) = A cos (O}ct + /m(t)dt) (1. I)
0

where t = time

c = carrier frequency, radians/second
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re(t) = modulation

The following types of modulation are used:

I
I. gaussian (random): p(m) -

Z m 2where _ = modulation power = E( )

Z. sinusoidal (deterministic): re(t) = _OmSin co tm
co

where _= n/co
m

co = modulation bandwith, radians/second
m

co = one sided bandwidth of S(t), radians/second
n

3. pulse (deterministic): m(t) = _[u(t) - u (t-T)]

where u(t) = unit step

Gaussian modulation is used in deriving a11 theoretical results.

Sinusoidal modulation and pulse modulation are used in the computer simu-

lation of spike detection and the solution of ML equation respectively.

It will be assumed in all cases that

>> tO >Aco_
coC 1T m

and that

co & (l.Z)
n

The latter approximation is often used for sinusoidal modulation; see for

example, Rice (1.7). [A paper by Stewart (1.8) in 1954 indicates that for

gaussian modulation, the 3db bandwidth of S(t) is approximately I. Zv].

There are two types of input noise that will be considered in this

the si s.

A. White Gaussian Noise, nw(t )

This refers to gaussian noise with double sided spectral desnity

-(D <co < + co
Snw(co) = N O , -- _

and autocorrelation function

Rnw(t) = N O 6(t)

This noise can be separated into two components using the equation

nw(t) = Xw(t) cos coc t - Yw(t) sin coc t (I. 3)
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Each of the two noises, Xw(t ) and Yw(t) are also gaussian and have the

same spectral density and autocorrelation as nw(t ).

B. Band Pass Gaussian Noise, n(t)

This refers to gaussian noise with the spectrum shown in Fig. 1. 1.

This noise can also be separated into two components using the equation

n(t) = x(t) cos co t - y(t) sin co t (1 4)
C C

The two noises, x(t) and y(t) have the spectral density shown in Fig. 1.2.

The input signal power-to-noise power ratio will be called the

carrier-to-noise ratio and will be designated CNR. For the case of FM,

the carrier is

A cos (co c t + fro)

having a power equal to A2/2. For determining input noise power, only

the noise contained in the region of frequencies co such that

[co-coc [ <con

the carrier-to-noise ratio is

A 2
Carrier Power -_- A2_

= = -- _ (1.5)
CNR Input Noise Power co +_ 4Noco n

-- dco
w

_ -co
C n

will be considered. Henc e,

The output signal power-to-noise power ratio will be called the

signal-to-noise ratio and will be designated SNR. If e o is the output of

the FM receiver, then the signal-to-noise-ratio is given by

2
Modulation Power

SNR : Output Noise Power E(eo_m)2 (1.6)

The term threshold will be used in connection with the SNR versus

CNR curves of FM receivers. These curves generally approach an

asymptotic line from below as the CNR increases. The CNR at which

the SNR on the FM receiver curve differs from the SNR on the asymptotic

line by 1 db will be defined as threshold. Fig. (4.4) is a good example
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of the type of curves under consideration. The graph shows that the

1 db threshold point for the FM discriminator with modulation is ap-

proximately at a CNR = 9.5 db.
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Chapter 2

MAXIMUM LIKELIHOOD

2.1 Derivation of the maximum likelihood estimate

The modulation in a general communications system, during a

time interval 0 to T, can be regarded as a particular sequence of volt-

ages taken from the set of all possible sequences that could occur. From

a knowledge of the modulation source, one can assign a probability of

occurrence to each sequence. Similarly, the noise in the system, during

the time interval 0 to T, can be regarded as a particular sequence of

voltages taken from the set of all possible sequences that could occur.

Again, knowing the properties of the noise source, one can assign a prob-

ability of occurrence to each noise sequence. At the receiver, in this

communications system, one has a received voltage sequence consisting

of a noise sequence plus a particular function of a modulation sequence.

The ML estimate of the modulation sequence is then the most likely modu-

lation sequence to have produced the received voltage sequence. In mathe-

matical terms, the maximum likelihood estimate is that modulation sequence

which maximizes the conditional probability of all possible modulation se-

quences given a particular received voltage sequence.

If re(t) =

Sit) =

n(t) =

v(t) =

a(t)

modulation

m(_)d_ (for an FM system)
0

S(t, In) = function of the modulation - AM, PM, FM

noise

received voltage
f-a

S+n = Acos (_ t 4-Im)+n
c

ML estimate of re(t)

(for an FM system)
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then

p(m Iv) = condition probability of the modulation m,

a received voltage v

given

a(t) = the solution of the equation

8
_-_ p(m Iv)= 0

for which

p(a Iv) = an absolute maximum

If Eq. {2.1A) has more than one solution, then a(t) must be found by

evalvating p{m Iv) at each solution. Note also, that minimum likelihood

estimates of m are also solutions to Eq. (2.1A).

The first step in finding a(t) is to determine p(m Iv). From

Bayes' Rule, one finds that

p(m, v) p(v Im) p(m)
p(mlv ) = =

p(v) p(v)

(2.1A)

(2.IB)

(2.2)

where p{m, v} = joint probability density function of m and v

p(v) = probability density of v

p(m) = probability density of m

p(v Im) = conditional probability of v given m

These probabilities can be put into convenient mathematical form if one

assumes the time functions re(t) and n(t) are gaussian distributed and can

be represented as vectors in N dimensional sample space, i.e.,

-- --m

[m]= roll

mz I

m{t) in sample space : "m(At) -

m(2At)

• o o

m(NAt)

NAt = T

(2.3)

: a column vector
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n(t) in sample space = "n(At)

n(2LXt)

• • •

n(NAt) ]. n N

In]

(2.4)

= a column vector

Then if

Rm(T ) = E(m(t) m(t + 7) )

Rn(T ) = E(n(t) n(t + _-)),

Rm(T } in sample space = Rm(0)

Rm(AT)

o e •

Rrn[(N-I)A_ ]

Rrn(_7)

Rm(0)

• o o

• • •

-- [R
In

and Rn(T) in sample space =

] = a square matrix

-Rn(O ) R (AT)
n

Rn(_ T) Rn(0)

• • • • e o

Rn[(N-I)AT] ...

= [.R ] = a square matrix,
n

one can write p(m) and p(n) as follows:

1 ._m]T [Rm.-1 [rn]]p(m) = C I exp[- _

q

1 [n]T [Rn]-tp(n) = C z exp -_- [n]

Furthermore, since

Rm[(N-I)A T ]"

Rm(0)

.o o •

o o •

• • •

o o •

(2.s)

Rn(0)

(z.6)

(Z.7)

(z.8)

v(t) = n(t) + S (t, m(t) )

when re(t) is given, the samples of v(t) have the same density function as

n(t) except for the mean values which vary as s(t, rn).

Hence,

p(vlrn) = C 3 exp [-}[v-S] T [Rn ]'1 [v-S]]
(z.9)



-13-

Combining Eqs. (2.2), (2.7} and (2.9), one finds that

p(m[v) = CIC3 i iv_siT -1p(v) exp[- [Rn] [v-S]

_ l_ [m]T [R ]-1 [m]]
2 m (2•10)

The second step in finding a(t) is to evaluate the partial derivative of

p(m Iv) with respect to m and set that derivative equal to zero. Let

1 T n]-1f(m) : - _- [[v-S] [R [v-S] - [m] T [Rm ]-1 [In]]

Then

8--_ P(mlv) = exp[f(m)] -_ (_) + _ 8m

= 0

(2• ll)

Since v is a given received constant vector, p(v) is a constant; C 1, C 3

are also constant• Hence, the derivative of these quantities with respect

to m is 0• Since exp (f(m)) is not zero, except in the trivial case f(m)= -co,

we conclude that

C1C3 8f(m)

p(v) 8m
= 0

Therefore,

1
[Rn ]-1 Iv-S] + [m] T [Rm ]-1 [m] = 0 (2.12-)

where
B

8/8m I

8m z

8/8m N
m

because the meaning of 8/8m in N-dimensional sample space is the partial

derivative with respect to each component of m. The operator 8/8m cot-

responds to the del operator commonly used in electromagnetic theory
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and [Of/8m] is the gradient of f(m). [Note that for exp (f(m)) to be a maxi-

mum, f(m) must be a maximum].

In order to evaluate the partial derivative of f(m) with respect

to the ith component of m, it is necessary to expand f(m). The first term

becomes

-1
[v-S] T [Rn ]-I [v-S] = Z (vj-Sj) (R n )jk (Vk-Sk)

j,k

-I

where (R n )jk =

The refore,

j, k component of [R 71 matrix.
n

8 [v-S] T [Rn ]-1 [v-S] = _ 8 (vj-Sj) (Rn'l)j k (vk-S k)

1

a
+ _ (vj-Sj)(Rn'l}j k _. (Vk-Sk)

j,k *

8S.

=-Z j,_k _mi (Rn-l)jk (Vk'Sk)

(z.13A)

(Z. 13B)

if (Rn-l)jk is replaced by (Rn-l)k j and j and k are interchanged in the last

term in Eq. (Z.13A). The replacement is possible because R and, therefore,
n

its inverse,[RJ I are symmetric matrices. The terms

8 8

era--'7,v.j , _ vk
1 1

= 0

because[v]is a constant vector.

The term[m] z [R ]-I
m

one gets

[m] is evaluated in a similar manner and

TIra] [Rm]-I [m] = Z (Rm'l)i k m k
(z.14)

Writing Eqs. (Z. 13B) and (Z. 14) in matrix form, one has

8S 1
[8"_][v-s]T [Rj -I [v-S] = -Z [-_][RJ [v-S] (2.15)
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where

[88---m] [m] T [Rm ]-1 [m] = 2 [Rm ]-1 [m]

_ 8S1 8SZ 8S N

8S 1 8S 2

8m 2 8m 2

_ 8S 1 8S N
• o • • • •

8m N 8m N

Substituting Eqs. (2.15) and (2.16) in Eq. (2.12) gives

(2.16)

(2.171

[@@--Sm][Rn 1-I [v-S] - [Rm 1-I [m] = 0

Thus,[m]or the solution, In], is given by

as ]-i[v-s] I
[m] :[a]

In order to bring this equation back into real time, various authors

have found it convenient to define a new column vector _]&t such that

[8S ] [_]at : [Rm]-I [a] at N_'_ ' = "T-

(2.18)

(z. 19)

(2.20)

and 8S
[-_m][g]At : [-_] [Rn]-I [v-S] (2.21)

Then one has

as
Ca] : [R m] [_"'m] [g] at

and [v-S]: [R n] _]At

For the case in which S(t,m) is a no-memory function of m

the

(2.22)

(z.23)

(AM, PM),

[aS(t,m) l
matrix L 8m j is a diagonal matrix, [The off-diagonal terms are
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zero]. Consequently, if the ith component of the matrix Eqs. (2.22) and

(2.23) is written out, the following sums are obtained:

8S.

ai : (Rm)ij J gj AtJ J

-S. = _ (Rn)ij gj Atvi 1
J

In the limit as N--_oo, At--_0, andiAt

T

a(t) = f Rmlt, k)

0

v(t) - S(t,a(t)) =

=t, jAt= k,

8$(t, rn) [ g (k) dk
8m

m = a(k)

T

_ Rn(t,k) g (k) dk

0

one gets

(z.z5)

(z.z6)

(Z.ZT)

However, in the case of an FM signal,

8S(t, m) is not a diagonal matrix.
8m

an FM signal, one finds that

[s]

memory is involved and the matrix

Writing the column vector [S(t,m)] for

A cos (C0cAt + mlAt )

A cos (Z_ At + (m I + m2) At)C

ooo

• N

A cos (N_cAt + _=Im'jAt)

Taking the partial derivative of [S]T

r l
matrix LSmJ (Eq. 2.17):

with respect to m, one obtains the

-AAt

cat + mlAt ) sin(2_

0 sin (Z_

• • o

0

cat + (ml+mz)At)

cat + (ml+mz)At)

• e $

0

o o •

o • •

o o •

o • •

sin (Nco

sin (N_

cat + j_njAt)

• • •

cat + j_njAt)
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Thus, the product g] At is a column vector whose jth row is given by

k=N

Z as
k=j {_mjk gkAt

The equation for a. becomes, in this case,
1

a.=l _j (Rm)ij k=j_ (8_m)jk g kAt
(2.29)

In the limit as N --_oo, At --_0,

that

and iAt = t, jAt = k, kAt = _,

; I; ]art) = Rm(t, k) 8fm I g (_t) dp

0 × fm = fa( )

dk

one finds

to be used in conjuction with Eq. (2.27). Interestingly enough, this is not

the form obtained by Lawton (1.3) and therefore it will be called the second

form of the ML equation for FM. The first form of the equation can be ob-

tained by interchanging the order of the integrations over _ and k. If the

region of integration in the (_, k ) plane as shown in Fig. Z. 1 is examined,

one sees that the first integration is with respect to V at constant k, and

the second integration is with respect to k. If, instead, one integrates

with respect to k first, with the limits 0 to _, and then integrates with

respect to _ from 0 to T, one obtains the 1st form of the ML equation

for FM:

]R(t, k )dk

0

8S (p, fm)
arm [ g(p.) dp.

fm = fa(_)

a(t) =

(2.30)

(2.31)

For the case of white noise, i.e.,

Rn(.-) = N O 5(_)

Eq. (2.27) is readily solved: T

v(t) - S(t, a(t) ) = No

0

5(t-k) g(k)dk N
0

g(t)
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For the case of an FM signal given by

S(t,m) - Acos (_c t + fro)

the ML equation for FM (lst Form) becomes

aCt) = _ R(t, k)d [-A sin(¢Oc_ + Ia)] [A cos(_Oc_ + _m)

+ n - A coS(_c_ + fa)] d_

(z. 3z)

or (Znd Form)

a(t) : _ . R(t, k) cbt fa)[A cos(_o +
0 k

1

A coS( c + fa)]]d Idk

J
White noise is selected in this analysis for three reasons:

+n

(Z. 33)

i. White gaussian noise is the most common type of interference

encountered in practice.

2. The ML estimate is simplified to a single equation.

3. If filtered noise is used, i.e., non-white noise, the noise

will be whitened by the second of the two equations for the

ML estimate, Eq. (2.27).

Z. 1.1 Likelihood function

In addition to deriving the ML equation, the equation for f(m)

(more commonly known as the likelihood function) will be reformulated in terms

of time because it will be important later. The equation for f(m) is

1 [[v_s]T [Rn]-I Iv-s] + [m] T [Rm 1-1 Ira]] (3.11)f(m) : -

The terms [Rn ]'I Iv-S] and [Rm ]-I Ira] may be regarded as transformations

of the vectors Iv-S] and [m] by the operators [Rn]'l and [Rm ]'I respectively.

These inverse operators may be obtained using the following equation:
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[R]-I

operator

At

Fourier Transform [R(_-)]
+ endpoint terms

At
H (p) + endpoint terms, p = d/dt (a.34)

when R(t I, t2) = R(t l-t 2) = R(T), i.e., m(t) and n(t) are stationary.

In general, the endpoint terms are not zero; however, in all cases used in

this thesis they are zero. For the proof, see appendix A.

Thus,

f(m) = -_- [v-S] [Hn-1 (d) (v-S)] At + [m] [Hm-1 (_..)d

(z.35A)

(m)]At]

,v_S_i -I d -In (_-) (v-S)i + m.1 Hm ( ) mi At

(Z. 35B)

In the limit as N -. co, At--_ 0, iAt --_t, one gets

T

1 _ [ Hn_l _ t ]f(m) = - _- (v-S) ( ) (v-S) + m S -I dm (_-) m dt
0

(Z.36)

Z. Z Low frequency form of the maximum likelihood equation for FM

general,

The ML equation including the carrier frequency co c is, in

not convenient for analysis. Since the characteristics of FM

receivers do not depend on the carrier frequency, it should be possible

to eliminate terms that contain it. From Eq. (2.32) one sees that the

terms containing co t are given by
c (z.37)

F = -A sin (COct+ fa) [X cos(coct + fm) + nw(t) - A cos (coct + fa)]

Using trigonometric identities, one obtains

A Z A z

F = _-- sinf(m-a)-_-- sin(Zco

(z.38)

t + f(m+a))- Anw(t)sin(co t + /a)c c

A 2
+_- sin(2coct + Zfa)
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The terms involving 3_ t have no significant contribution at low frequencies
C

and will be filtered out by the ML equation. Hence, they can be neglected.

The noise term can be expanded into two terms:

-Anw(t ) sinc_ct cosfa - A nw(t) cosc_ ct sinfa

Let yw =-2 nw sinc_ct/A

xw = +2 nw coSC_ct/A,

then
2

: AN'- [sinf(m-a) + YwCOSfa- x sinfa]Z w
(Z.39)

Note that x w and Yw are uncorrelated white noises, i.e.,

4

E(Xw(t) Yw(t + v)) = A2 E(n w (t)nw(t + v) sir_ ct cos_
c(t+ T))

2

= -_ NoS(V ) E(sin_cV + sinC_c(Zt + v))

Z

= ---_ NoC_cV 5(v) = 0 (see Ref. Z.l)
A _

The autocorrelation function of x is
W

Rxw = 4A2 E(nw(t) nw(t + v)) E(sinC_c(t) sinC_c(t + v))

2 2N
= = o 8(v)Rxw _ NO 6()) cosec, A--z-

(z.40)

Using a similar calculation,

2N
O

Ryw = 7 8('r)
(Z. 41)

It is convenient,

A 2
F -_--

at this point, to rewrite F as

[sinfm cosfa - cosfm sinfa + Yw cosfa - x w sin/a]

F

F
A z

[(sinfm + yw) cosfa - (cosfm + Xw) sinfa ]

[,cosfa-c sin/a] (Z. 4Z)
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where s(t) = sinfm + 7w (2.43A)

c(t) = cos fro + x
W

(2.43B)

Thus, s(t) and c(t) may be regarded as the basic data from which an esti-

mate of m must be made. The ML equation can now be written as

q= -- Rm(t-k)d (s cosfa - c sinfa) d_t
a 2N° 0

(2.44)

2.3 SNR for the maximum likelihood estimate for FM at high CNR and

infinite observation interval (T)

In order to calculate the SNR for the ML equation, it is conven-

lent to use the second form of the equation (Eq. (2.33) and Eq. (2.39) com-

bined):

a = _o Rm(t-k) (sinf(m-a) + Yw cos/a- Xw sinfa) d
0

dk

At high CNR, the term sinf(m-a) can be replaced by f(m-a) (linearized

model). The noise term, 7w cosfa - Xw sinfa can be replaced by a white

noise n whose autocorrelation function is given by
W

E(Yw(t I) Yw(tZ ) cosfa I cosfa z + Xw(t I) Xw(t z) sinfa I sinfa z)

= Ryw(_) Rcosfa(7) + Rxw(_) Rsinfa('r)

2N

= _ 6(v) [Rcosfa(O) + Rsinfa(O)]A 2

Since all values of a are equiprobable,

1

Rcosfa(O) : E(cosfa) 2 = _-

1

Rsinfa(O) = E(sinfa) z =
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Therefore,

2N
O

Rnw : 7 5(T)
(2.45)

Since the SNR for values of t well inside the interval 0 to T

(where T = co) is required, the end point conditions on a are not signi-

ficant. Therefore, for purposes of simplification, one can change the k

limits to -co to +co.

Hence, the linearized ML equation becomes

A z _"=- Rm(t-k ) (J(m-a) + nw)d _ dk
a 2N° -oo k

The operator form of this equation is

whereH(p) = F.T. of Rm(V),
a -- -ZN----° • p .j

p - d/dt

Solving for the output noise, a-m,

a-m _pm

AZH(p) _ pZ

ZN o

in terms of m and n
W

AZH(p)
_ZN Pnw

0

+ AZH(p) Z

ZN - p
0

one gets

(z.46)

(z.47)

(z.48)

The output noise power is given by

E(a-m) 2
1 ZH(J ¢°

O, + Z

Z Sm(_ ) +

A41H0 )[z
2

4N
0

AZHlJ_ )

+

ZN
O

2
¢o

w

I

2
2

dco

(Z. 49A)
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oo

l
E(a.rn) Z = _

A 4 2
4H(j_ )+ "-"-2 H2(j_ ) _

4N
O

2N
0

7
d_ (Z.49B)

co 2H(j_ )

E(a_m)Z = _i _ A Z

0 N2N- H(i_) +_
O

(z.49C)

Thus, the SNR at high CNR can be written as

Ol"

SNR =

SNR =

Z
E (m)Z- _ _

E (a-m) z m

5
0

ZH(j_ ) d_

2

_--N H(jco) + _o
O

Z
or IT

(3o

_ _ 3H(jo_) ckoZ_ CNR
0 n

Z
H(j_ ) + w

using Eq. (i.5).

2

For the case
Z -°am[T[

Rm(_)" " = o" e
2.

Z_ o-
rn

H(j_ ) = X "Z
co +m

m

the SNR is given by

Z
o-SNR =

Of) Z Zd__m
Z CNR

4_ _ --+
0 m n w

Z Z
+

m

4
(,o

(z.s0)

(z.51)

(z.5ZA)
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SNR =
Oo

2_m _ 4

0 to -I-to

to 2d_

Z 2 2. CNRto +4_ o.to
m m n

(2. SZB)

SNR =

,r

SNR = -i

m 2_-to 2 + 2_ Z CNRrn 4_m o. ton_

o.to CNR

(2.52C)

(2.52D)

SNR =_1 + 4 I"
[33 CNR _.

N

2 2
where [B = to /_ , o. = to /2 .

n m n

2 sinto m'r
For the case R (.') = o.

m to r
m

1/4

[863 CNR]

(z.szE)

H(jto) )o.2

= w/co m ,

0

the SNR is calculated as follows:

2
SNR - o. Ir

to 2

;n o- lr 2_m

to n o.
2 ------ CNR +

to
m

m

m

to

to
m

m 2

2
to o.

2 n
to

m

CNR + to

(2.53A)
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SNR

_0

&0
m

m

Z

n
&o
m

CNR tan -I

(z.53B)

SNR =

1 - 4_3 CNR
-I

tan

(2. s3c)

1
SNR =

31B3 CNR

1

5(_3 CNR) p

+
1

7(IB3 CNR) 3

- etc.

(P. 53D)

SNR = 31B3 CNR for 3_3CNR>> I. 8 (2.53E)

Thus, for rectangular modulation spectra, the usual FM improvement

formula is obtained. This result justifies the assumption made in section

Z. 1 that the ML estimator requires no prefiltering because it is an opti-

mum e stimator.

Note that for low order Butterworth modulation spectra,

the full FM improvement is not obtained. The spectrum of the output

noise for this situation is given by the integrand of Eq. (Z. 49C) and it is

shown in Fig. Z. 2. Note that the noise spectrum in the region I_ I < _ m

has the characteristic parabolic shape for an FM receiver. However,

the output also contains noise power from the region I_ I > _°m, which we

ordinarily filter out in the rectangular modulation spectrum case. But

this type of filter is not optimum for the low order Butterworth spectrum

case; an optimum Weiner must be used to get the best results. From
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Papoulis (2.2), we find that the optimum Weiner filter is given by

s (_)
m

H o(_ ) =
S m(co) _- -Sn l(6a)

(2.54)

whe re Snl (_) = spectrum of the unfiltered output noise of an FM

at high CNR

2N o z J.,I(_ ,

J_oJ >co

n

n

Henc e,

s (_o)
H (_) - m , I=1<=

o 2N
S (_) + _._2_0z
m AZ

The spectral density of the output noise is

(e) Z S (u)Snl (_) Sm m

(e) + (_) A z Z
Sm Snl _ Sm (_) +

O

Jo_J < co
n

(z. ss)

(z.56)

(z. 57)

which agrees with the integrand of Eq. (2.49C). Thus, at high CNR, the

ML receiver operates like an FM discriminator with a Weiner Filter.

Furthermore the SNR-CNR equation for low order Butterworth modulation

spectra does not contradict the usual FlY[ receiver formula

SNR = 3_ 3 CNR,

but merely indicates that this type of modulation is more difficult to sepa-

rate from the noise. A general formula for the SNR for a kth order

Butterworth modulation spectrum is derived in Appendix B. The result

is
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ZK+Z3= [ --2K I (2K-I)/(2K+2)

sin _ 2K sin =

.....K+I 83 CNR
= IT

SNR = K sin _ (2.58)

which is valid for _3 CNR >> 1

2.4 Solution of the maximum likelihood equation for FM

The basic technique to be used on the computer will be to evaluate

the function aR(t ), given by

T T

aR(t) = 2_ Rm(It'k I) [s cosla i

o 0 k

- c sinfa i] d_ (2.59)

= result of substituting a.
1

= aR(a i)

in the ML equation

for a succession of ai(t ) (estimates of the solution) in some systematic

manner so that

T

,[ laR(_) - ai (N) [ dv = Total solution error (TSE)

0

(2.60)

becomes arbitrarily small. Clearly, when aR(t ) = ai(t ) the total solution

error is zero and the equation is solved.

Since the number of times aR(t) must be evaluated is likely to be

large, the first step in preparing the program is to choose a set of equa-

tions which will evaluate aR(t) with a minimum of computer operations.

Two possible methods are evident:

1. Direct integration of the equation for aR(t ) using a stored

table of Rm(7 ).

2. The formation of a set of differential equations, with appropriate

initial conditions, whose solution is aR(t).
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If N is the number of sample points involved, method 1 requires _- N 2

multiplications to obtain the N samples of aR(t), while method 2 requires

~ KN multiplications where K depends on the order of the differential

equations and K << N. Hence, the 2nd method is preferable. For con-

venience, choose Rm(7) so that its Fourier Transform, Sin(c0), is a

Kth order Butterwo rth function (Z. 3). Then

2 2K-1
Sm_)" " = _ _m

2K sin _ZK

ZK ZK

m

and

sin
Z 2K-I ZK ZK

Sm " 2K + _2"-I'K 2K(p) - cr _m _m P

(Z. 61)

(z.6z)

To obtain the corresponding Rm(T), Sm(p) must be separated into two

functions of p, one with all the left hand p-plane poles of Sin(p) and the

other with all the right hand p-plane roles of Sm(P). Consequently, let

ZK-I
2K _ m sin -_

mZK + (_I)K pZK

= H(p) + H(-p)

whe r e

H(p) contains only poles in the rh p plane

and

H(-p) contains only poles in the lh p plane.

Then, according to the theory of the double-sided Laplace transform,

(z.63 )

Rm(t)

2
I LT'I (

Rm(-t)

t>O

t<O

(Z. 64)
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The operator form of the ML equation with Sin(p) given by

Eq. (2.62) becomes

A z 2 2K-I 3K sin

aR(t) 2N ° m zK (_I)K 2K bl(t)+ p
m

(2.65)

p = d/dt

where

bl(t) = _ (s cosfa i - c sinfai) d_

t

(Z.66)

The differential equation for aR(t ) is readily obtained from the equation

above; however, the initial conditions on aR(t ) and its derivatives are

not easily obtained. To avoid this difficulty, ones defines four new

functions, bz(t ), b3(t ), b4(t ) and b5(t ) with the equations

whe r e

D(p) . b2(t) = bl(t)

b3(t) :, N(p) . bz(t)

D(-p) . b4(t) = b1(t)

b5(t) = N(-p). b4(t )

so that

H(p) iN(p) H(-p) = N___= D(p) ' ' P = d/dt

A z 2
0"

aR(t) = Z-_ [b3(t) + b5(t)]
O

(Z. 67.4,)

(2.67B)

(2.67C)

(2.67D)

(z.68)

With this set of equations defining aR(t ) , the initial condition problem

is eliminated because b2(t) has zero initial conditions at t= 0 and b4(t )

has zero initial conditions at t=T. To prove this theorem, let

-i 1
m

R(t) = LT D(p) t>0

= 0 t< 0

(2.69)
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Then
t

b2(t ) = _ R{t-k) bl(k) dk

0

is Eq. (2.67A) written in the time domain. By inspection, b2(0) = 0.

The first derivative of b2(t) , obtained by differentiating Eq. (2.70), is

b2(t) = _ 1_(t-k) b1(k) dk

0

which is zero at t=O because RiO) =

respect to t will show that

(z.70)

+ R(0) bl(t) (2.71)

0. Repeated differentiation with

(2.72)b(i)(O) = 0 , i = O, i, 2, ... K-I

(z. 73)

because

R(J)(0)= 0 , j= 0, i, z, ... K-Z

The latter equation is demonstrated to be correct by applying the initial

value theorem of the Laplace Transform to 1/D(p) where D(p) is a poly-

nominal of degree K. A similar proof holds for the initial conditions

at t=T in Eq. (2.67C) for b4(t).

Although Eqs. (2.67B) and (Z. 67D) are also differential

equations, they present no problem because they define b3(t) and b4(t)

simply as linear sums of bz(t) and b4(t) and their derivatives.

2.4.1 Iterative methods

The second step in preparing the program is to choose a systematic

method of varying ai(t) so that it will approach aR(t). Various methods

have been suggested in the literature, the most common being the iterative

method. This method corresponds to NewtonWs iteration technique for

solving for the root of an equation extended to N-dimensional (vector)

space.
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Newton's method in one dimension for finding the root of g(z) = 0

is

Zne w Zold
_real

z = Zol d

(2.74)

For the N-dimensional case (where z is a vector),

Znew, Zold, g(z) = column vectors

= N *N matrix

Thus, in terms of matrices, Newtonls method becomes

[Z]ne w = [Z]ol d

In our case, one finds that

as [Rn]-I [v-S][g(z)]-,-[a]- [Rm] [_-_]

(z.75)

[_z]__[,_,.a] [a]T _ [_]o_ [.[Rm] [aSibm, [Rn ]-I [v-S]] T

8 [v_s]T [Rn]-I 8S T= [1] - [_m ] [_m ] [R m]

so that

[a]new = [a]old [11 8 8S T [ m]J_ _ [_m ] [v-S] T [Rn ]-1 [_--_]

8S [Rn 1-I [v-S]]• [[a] - [R m] [_1

[a] = [a]old

-i

(2.76)
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When the CNR is very low, the term

[aa---mI [v-S] T [Rn ]-1 r as 1T [Rml- . t _m a

may be neglected in comparison with the unit matrix [1] because the

elements of the matrix A2[Rn ]-1 will be very small.

technique proposed by Van Trees (1.5), i.e.,

Thus, we obtain the

_ 8S [Rn]-I[a]new = [a]old [a]old + [Rm] [_-_] iv-S] I

[a] = [a]old

(2.77A)

8S [Rn]-iiv-S][[alnew = [Rm] [_1

[a] = [a]old

(Z. 77 B)

which corresponds to repeated resubstitution in the ML equation. How-

ever, the technique is limited to low CNR and may not pick out the maximum

likelihood solution since the likelihood function is not evaluated in the process.

Thus, when itdoes converge, ithas a high probability of leading to a solution

witha relative maximum likelihood but not to the correct solution (ifone assumes

that itis equally likely to converge to any one of the solutions of the NiL equation).

An extension of this procedure to try to obtain convergence at

higher CNR would be to approximate

-[88---m ] iv-S] T [Rn ]-I ,am_[aslT [Rm]

by an appropriate constant,

1[a 1 [a 1
Jnew = 'old I +

c_, so that the iteration equation becomes

tvslCal]l[_]
[a]=[a]ol d

(z.78)

However, convergence proofs for this method exist only for linear integral

equations (Z. 4, Z. 5, 2. 6) and a few nonlinear integral equations with
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non-periodic kernels. Many tests using this method were attempted but

failed to converge, i.e., the limit of a., as i --_ oo, did not appear to
1

exist. Furthermore, the effective gain, G, of the ML equation,

S ..

T

y laR (ai)
0

T

y la i I dk

0

f dk

is very large, particularly at high CNR, forcing the use of very small

values of _. As a result, even if the method would lead to a solution,

the number of iterations required would be too large for the method to

be practical.

The most natural method for this problem, we concluded, is to

select ai(t ) so as to maximize the likelihood function f(ai) at each level

of iteration. We used the following steps:

1. Let ao(t ) = 0

2. Let al(t) = ¢1 aR (ao)

3. Vary e I until

f (al) = a maximum

The al(t ) obtained is called a. lm

4. Let a2(t) = aim + _2 (aR(aim) - aim)

5. Vary ¢2 until

f (a Z) = a maximum

6. Continue the process until TSE (ai) (Eq. (2.60)) is arbitrarily small.

(2.79)

In step 3, in general, more than one maximum will be found,

indicating that more than one solution is possible. Since the absolute

maximum likelihood estimate of m (Eq. (2.1B) is being sought, and since
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f(ai) is a measure of the likelihood of ai, the best a.1 to choose among

the available set of a. appears to be the a. corresponding to an absolute
1 1

maximum of f(ai). It should be pointed out, however, that this does not

guarantee that the final result has an absolute maximum likelihood. As

far as is known, such a guarantee can only be obtained through a test of

all possible vectors in the vector space, which is clearly impractical

if not impossible.

An alternate procedure is to choose a. so that the total solution1

error is a minimum. Since the maxima of the likelihood function and

the minima of the total solution error do not coincide, the best one can

do is to choose the minima of the solution error closest to the absolute

maximum o£ the likelihood function. A test of this procedure indicated

that it does not converge to the solution as fast as the first method.

2.4.2 Evaluation of the likelihood function

The evaluation of f(a) proceeds as follows: Let

2 2K-1
Hm(P) = Sin(p) = _r o_m

1T

2K sin 2"-K-

2K . . 2K
+ (-I) K p

m

H (p) = S (p) = N
n n o

(z.6z)

so that Eq.(2.36) for f(a) becomes

f(a) =

o_m + (-I)K p
1 1 [v-S] 2 + a- -- a dt

2 2 2K-I sin _-0 2K _r o_m

operator

whe r e

[v_Slz - [A cos (_c t + fro) + Ay sin_c t +Ax sin

(z.80)

(2.81A)

t-Acos t+/a)]z
c
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[A cos t [cosfm + x - cosfa]
C

A sin_ct [sinfm ÷y - sinfa] ] 2

(z.81B)

A 2 A 2
= _-" [(s-sinfa) 2 + (c-cosfa) 2] ---_--(cos 2coct)

[(s-sinfa) 2 - (c-cos/a) 2] - A 2 sin 2coct (s-sinfa) (c-cosfa)

(2.81C)

The terms multiplied by sin 200 t and cos Zco t have a negligible contri-
C C

bution to the integral for co T >> 1. Hence, they will be neglected. Thus,
C

T

-A2 f [ cosfa) 2 No
f(a) = _ (s-sinfa) 2 ÷ (c- +A 2 2 K co 2K-1 sin --

0 m 2K

(2.82)

a (co 2K a(ZK) ]a + (-1) K ) dt
m

Unfortunately, it turns out that this quantity has only minute variations

near its maximum points because the fixed contribution, given by

A2 ; c24"-'iq" (s2 + + 1) dt

o 0

far exceeds the variable contribution given by

a + (-i)K

+ Z--N sinfa + c cosfa - o m dt2 2K-1 _r
o 0 2A2 ¢ K co sinm TR

Hence, a better quantity to examine is L defined by

1 (' _r a ( co a + (-1) K
m

L = -_- sinfa + c cosfa - _3 7r 2K + 2
0 4 K CNR sin _-_ corn

dt

(2.83)
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which is the normalized variable portion of f(a). Note that by subtracting

the term
T

A z

0

(s 2 + c 2 + I) dt

from f(a) and using the remainder to form L, we have not changed the

locations of the extrema of f(a). The a-values of the maxima of f(a) cor-

respond exactly to the a-values of the maxima of L because the subtracted

term is not a function of a. Using the above definition (Eq.(2.83), L is

an absolute maximum when p(a Iv) is an absolute maximum.

2. 4.3 Expected value of the likelihood function

The expected value of the likellhood function defined by Eq. (2.83)

will be determined based on the linear model for K=I and K=co. For

convenienc e, L can be separated into two parts, namely

T
f%

1
_[s sin_a + c costa] dtL I -'_-

0

ZK a + (-i)K a(2K))1 _" a (_ m dt

L2 = "T 4K _3 _ 2K + 2
0 CNR sin _ _m

so that

L - L I - L 2

By inspection, it can be seen that the expected value of each component

is simply the expected value of the corresponding integrand. In order

to determine the expected value of L 2, one can define

z
L2(_) = _3 4 E (a(t + T) a(t) -_(t)] )

4 CNR _m

(2.84A)
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W

4 83 CNR co
4

rn

E (a(t + _) 2(o o-2 R -i
rn

(t-×) a(X ) dX)

(2.84B)

No +? -I
- T Rm-(ID

(t-x)E (a(t+ .-)a(k ) ) dk (2.84C)

N +fO -I

= A---2- R m-(30
(t-k) R a(t-k + _r)dk (2.84D)

at K=I. It can be shown that Eq. (2.84D) is valid for any K. Then at

_=0, L (0) is the required expected value. The integral in Eq. (2.84D)
2

is a convolution in the time domain which can be replaced by a multipli-

cation in the co domain. Hence,

N oo Sa (co)

oL2(0) = A2---_ H m(co) dco
(z.85)

By solving Eq. (Z. 48) (linear Model) for a, one gets

a

Hm(P) (m + pn)

2N
o 2

Hm(P)- A--_ P

d
, where p = d-t-

Hence,

H 3(_)
m

2N

+ o z]
[Hm (co) 7 co

2 +

2N
H Z (co) o coZ
m

2N
o z]

[Hm (co)+ T co

2

(Z. 86A)

2
H (co)

m

2N
o 2

Hm(co) + A-2-- co

(2.86B)

Therefore, LZ(0 ) reduces to

NoLZ(0) =

H (¢o) dco
In

2N
Hm (co)+ o 2

(z. 87)
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2
Zoo o"

m
where H (_) = Z Z

m c_ +co
m

Substituting the above equation for Hm(C_ ) in the equation for L2(0 ) gives

the r e sult

LZ(0)

2
0" CO

m _ d_ ZA _ 2
4 2 Z m

+_ _ +
m N

O

(z.88A)

2
0"

2 2 A22  Azzm _ 1+2
3

N _ 3 N
O rn O m

(2.88B)

_2 = 1

NR 1 + 4 NR 16 0 z
/CNR\ ¼

(2. 88C)

for #3 CNR >> 1

For the case in which

Hm(_) =

0

m m

m

the equation for L2(0 )becomes
2

Gr w
w _ dto

Z 2N °
_ +

_m

2
(2.89A)
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L0

o- d_o

L2(0) = _ Z A z Z
IT 0"

_o 4- ZN ¢o
O m

(2.89B)

Upon performing the integration, one gets the result

2
o- 1 -i 1

L2(O}- - - 2 tan

m w o" A _-o-

3 3
o,) u)2No m o m

4 _3 CNR

= _ _3 CNR

-1
tan

1

_/'_3 CNR

1

3 (63 CNR) 2

1
+

5 (63 CNR) 4

I 63 1= for CNR >> --
4 _ CNR 3

(2.90A)

(2.90B)

etc]
(z. 9oc)

(Z. 90D)

The expected value of the first part of L, namely

L1 = 1T _ (s sinfa + c cosfa) dt

0

(2.91)

is given by

E(s sin/a + c cos/a)

-- E(cos/(m-a)

= E(cos/(m-a) )

+ Yw sinfa + x cos/a)W

+ E(y w sinfa + x cos/a)W

(2.9ZA)

(2.92B)

The noise term, Yw sinfa + Xw cos/a, has an expected value of zero.

The term cosf(m-a) can be evaluated if a is gaussian as in the linear

model (m is given as gaussian) as follows:
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Then

Let e = f(m-a)

E(8) 2 = E(f(m-a))2= o.82 (z.93)

and

+CO

E(cosS) = J cos{) p(8)de
-00

(2.94A)

/co -e2/2 Gre2 _o.82/
2E(cose) = cose e de = e

-oo _2 lr Cre2

The expected value of 02 is readily obtained from Eq. (2.48).

result is

E(O)2 1 _ H(jco)
= _" 0 A 2

z-W- H(Jco)+ co

dco

The

(2.94B)

(z.95)

which is the same as Eq. (2.87).

E(8)Z = 2Lz(e)

so that

Hence

I z co
E(e) z = ! m('r) =

8 _4 ,CNR_¼ for R _ e m

1
for Rm(v )2_CNR

2
sin co

m

co "r
m

q-

[rectangular modulation spectrum]

(2.96)

(2.97A)

(2.97B)

Thus, the expected value of L approximately given by

E(L) _ 1- _r82

for Rm(V)

for Rm(m )

z co
"_" 0" e m

2
cr sin co m

m

co T
m

(2.98A)

(2.98B)

(z.98c)
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The essential result, then, is that if no spikes are present, the expected

value of L is approximately 1 for reasonably large values of 13and CNR.

2.5 Computer simulation of the maximum likelihood estimator

In order to demonstrate that the procedure presented in section

2.4.1 leads to the solution of the lV[L equation, the procedure was employed

to solve the equation on a digital computer. The equation was simulated

on the IBM 7040 with the Fortran IV program given in Appendix F using

the following conditions:

Rm(.')

Rn(.')

CNR

= 0" e m

= N 8(_)
O

= 3db _ = --
m 25 n "_

2
2

13=5 _ =_6-

At = time between samples = . 1 sec

N = number of samples = 250

re(t) = _ , 0 < t < T (FMpulse)

n(t) = gaussian random numbers with bandwidth 7r/At = 10T

[see Appendix E]

= widest possible bandwidth in this computer simulation

Fig. 2.2 shows a graph of the likelihood function, L(_ 1) obtained in

accordance with step 3 of the procedure. Figs. 2.3 and 2.4 show the

corresponding variations in the total solution error, TSE(e 1) and the

signal--to- noise ratio, SNR(el). Note that the L(e 1) curve has several

peaks, anyone of which could lead to a solution. Howe ver, it has only

one absolute maximum. In addition, it is clear that this peak is a good
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choice because the SNR (el) curve also indicates a peak in the vicinity

of this peak. The significance of the fact that the peaks in the SNR (e l)

and L (el) coincide is very great; this is the first indication that demodu-

lation is taking place, i.e., that the correct signal is being extracted

from the noise. (Of course, the SNR (el) curve is only possible when

the modulation is known beforehand. In a realistic demodulation problem,

this curve would not be available). The curves of L(ci), TSE(ei) and

SNR(c.) are similar to those of L(Cl), TSE(_ I) and SNR(_I) respectively
I

and will not be given.

Figs. 2.6 and Z. 7 show the plots of SNR, TSE, L and c as a

function of the iteration number. Note that the likelihood function L is

a continuously increasing function (approaching some asymptotic value).

This must be so since at any iteration the choice e=O, which keeps L

constant, is available. However, if the best choice of _ for maximum

L is _=0, the iteration process would stop because ali the values attained

by the various functions at c=O would be repeated at all future iterations.

Fortunately, in the many programs that were tried, this situation never

occurred. If it did, we would have used a constant for a R in the next

iteration and then returned to the normal routine.

Fig. Z. 8 shows the approximate solution of the ML equation for

the conditions stated earlier after 10 iterations of the procedure developed

in section Z. 4.1.

The large size of the TSE should not be regarded as an indication

that the approximate solution is far from the true solution.

consider the equation

x = 1000 sin (x-l)

For example,

(Z. 99)
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for which

TSE = 11000 sin (x-l) - x[

The correct solution is approximately x = 1. 001; however, if x = 1.1

(which represents a 10% error) is substituted in Eq. (2. 100), the TSE is

99.9, which is quite large. Thus, the TSE should be compared to the

maximum value it can attain, which is approximately 1000; then the TSE

of 99. 9 indicates a relatively good solution. The approximate maximum

value of the TSE for the ML equation is derived in appendix D for the

case K = 1. The result is

p3TSE = CNR (_ T) (co T - I)max Tr m m

= 535

for the conditions given at the beginning of this section. The total solu-

tion error should be compared to this value for purposes of estimating

how far away the approximate solution is from the true solution.

In addition to programming the h/IL equation for a Butterworth

modulation spectrum of order K = 1, the case K = 3 was programmed.

The SNR values for the ML estimate after 10 iterations for both K = 1 and

K = 3 obtained with various noise samples are shown in Fig. 2.9 along

with the asymptotic SNR-CNR lines for K = 1, 3 and oo. An attempt was

made to determine the threshold of the ML estimate; however, the number

of points needed for a reasonable estimate (based on 500 • 2=/_0 seconds
n

of noise) would be about 200 at each CNR. Unfortunately, this would re-

quire an unreasonable amount of computer time since the computer time

for each point is about 7 minutes. In addition, 10 iterations at each point

is probably a little low. Judging from the results, about 20 iterations

would be needed for dependable results. Furthermore, it appears that a

(2.100)

(2.101)
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truer test of the ML equation for SNR purposes should involve a longer

interval T since at the start of each interval, the estimator is given the

correct initial phase angle. If a longer time interval T were used, the

estimator would be given less noiseless information.
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T
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• dF

=/z
0 T

/-- Region of integration

Ist integration, Ist form

Fig.2.1 Region of integration for the ML equation

--OJm 0

s(_)

+ OJm fLU

Fig. 2.2 Spectrum of the output noise for the MLestimate at high CNR
ond Butterworth modulation spectrum of order K=!
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Chapter 3

SPIKE DETECTION

3. 1 FM discriminator

Theoretically, spike detection can be applied to any one of the

three well known FM receivers, namely the phase-locked loop (PLL),

FM with feedback (FMFB) or the FM discriminator. For purposes of

simplification, we will apply it to the FM discriminator.

Before considering how to build an acceptable spike detector,

it will be worthwhile to review the principles of operation of the dis-

criminator type of FM receiver. Fig. 3. ! shows the block diagram of

the complete receiver. In effect, the FM discriminator receiver rneas-

ures the rate of the change with respect to time, of the angle e associ-

ated with the signal plus noise vector [(R, 8) in polar coordinates, (s, c)

in rectangular coordinates] as shown in Fig. 3.2. The equations for

the basic voltages in the FM discriminator are given below (see Fig. 3. 1):

1. Input to the receiver

v = A cos (_c t + ./m) + nw(t )

2. Input to the limiter

t-As sin¢o te I = A c cos coc c

where s = sin fm + y

c = cos .(m + x

x, y = noise with bandwidth _o
n

3. Input to the discriminator
c co.s_C0_..t . s sin _° t

C C

e_-- , ,,4s +cZ

4. Input to the low pass filter

d -I s &c-6s

e 3 = _-_,(tan _) = s24c2

d

(3ol)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7A)

(3.7B)
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Fig. 3.3 shows typical input and output waveforms for an FM discrim-

inator at high and low _ with the noise bandwidth (tOn) and the carrier-to

noise ratio (CNR) fixed. In addition, the modulation shown is sinusoidal,

cos to t (3.8)i.e. m: _0 m m

Studies of these waveforms (which are readily observed on an oscilloscope)

have led various investigators such as Rice (1.7) and Cohn (3.1) to de..

scribe the output of the FM discriminator as consisting of the following

c ompone nt s:

1. Modulation

2. Gaussian Noise

3. Doublets (with area zero)

4. Spikes (with area 2w)

The first component is the transmitted information. The last three

components are the three types of noise which can occur with various sig-

nal vector-noise vector configurations. Fig. 3.4 shows the type of situa-

tion which produces gaussian noise in e and e, i.e. , when the amplitude

of the noise vector is much less than the amplitude of the signal vector

(fixed at unity amplitude). For simplicity, the modulation has been set to

zero. When the noise vector is large and comes close to the origin (0),

but does not circle the origin as in Fig. 3.5, the discriminator output con-

tains a doublet. Note that the net change in e, e2-e 1, is << zv. When the

noise vector is large and does circle the origin, we have a spike. This

condition is shown in Fig. 3.6. Note that in this case the net change in

e is approximately 2w.

The approximate spectrums of each of the four components at the

output of the discriminator are shown in Figs. 3.7 A, B, C and D. The

spectrum of the modulation is chosen as rectangular for simplicity. The
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spectrum of the gaussian noise is obtained by noting that the gaussian

noise is approximately (see appendix D)

ng = _t(y cos fm-x sin fro) (3.9)

at the output of the discriminator.

of y cos fm- x sin fro, we find that

E[(Yl c°sfml - Xl sin/ml)(Yz c°s/m2 - x2 sin _m2)]

= E(y Iy2) E(cosfm 1 cos(m2)+ E (XlX2)E (sin;m 1 sin(m2)

- E {xlY2) E (cos fm 1 sin/m2) - E (xzYl) E (sinfm 1

= ZRx(7) Rco s fm (7)

=R (7)
g

since E (XlXz) -- E (yly2) -- R x (7)

E (xlY2) = E (xzYl) = 0

E (cosfm 1 cosfmz)= E (sinfm 1 sinfm2)- Rcosf m (7)

For simplicity, one can assume that

, ZNo I_1 <Sx(_O)= _ n
o

Evaluating the autocorrelation function

(3.10A)

cos fro 2)

(3.10B)

(3.10c)

(3.11)

(3.12)

(3.13)

(3. 14)

(see Fig. 1.2) and that
w

I 2w nScos fm (0o)=
0

n

n

(3.15)

The latter assumption is based on the fact that

E (cosfm) z = 1/2 (3.16)

and that the bandwidth of the modulated carrier is the same as the band-

width of the noise: Thus_

Sg(_) = z z Sx(_ ) , Scosfm (_)

2
where the 0_ factor is introduced by the d/

uating the convolution in Eq.

dt operator in Eq.

(3.17), one finds that

(3.17)

(3.9). Eval-
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, <2Sg(_) = A2 I- 2_ n _n

0 , I_I >2_o n

(3.18)

The spectra of the spike noise and the doublet noise are not

known exactly. The best one can do is approximate them by assuming

that the spikes and doublets have typical shapes like those shown in Fig.

3.8. [However, wide variations from these shapes occur. ] The doublet

waveform indicates that the spectrum is bandlimited and has a parabolic

shape at the origin. The spike waveform indicates that the spectrum is

also bandlimited but is flat at the origin. It is assumed in both cases

that the sequences of doublets and spikes at the output of the discriminator

occur randomly and have a finite probability of occurrence. Hence, their

occurrence follows a poisson distribution.

3.2 Spike detection in a digital FM system

The first work on spike detection was performed by Schilling (1.6).

He built a spike detector for a synchronous FSK system in which positive

and negative FM pulses are the transmitted modulation. The receiver is

an FM discriminator followed by a low pass filter and a sampler. The

sampler measures the sign of the pulse at a particular sampling instant

t 2 and decides that a on..._ehas been transmitted if the sign is positive and

a _zer._.._oif the sign is negative. The effect of a spike on a pulse after the

low pass filter is to decrease the amplitude of the pulse or even reverse

the sign of the pulse and cause an error. [Rice (1.7) has shown that the

probability of a positive spike with positive modulation and a negative spike

with negative modulation is negligible; hence spikes practically always tend

to cancel modulation area. ] To detect the presence of a spike, a simple
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threshold scheme was set up; if the magnitude of the voltage e 3 (see

Fig. 3.1) exceeded a threshold level eTH, a spike was presumed to

have occurred and the time of occurence, tl, was noted.

Suppose the situation shown in Fig. 3.9 occurs, i.e., the out-

put of the discriminator consists of a positive modulation pulse plus a

negative spike [for simplicity, the spike is shown as an impulse

-2_ 8(t-tl)]. Then the output of a low pass filter H 1 with bandwidth >>0_ n

consists of the sum of the two waveforms shown in Fig. 3.10. [hl(t ) is

the impulse response of the low pass filter H 1. ] Note that in this case,

no error occurs because the sign of the sum of two waveforms at the

sampling instant t2 is still positive. However, there is an interval of time

which can be exactly determined, during which the occurrence of a spike

will definitely cause an error, i.e., the sign of the modulation pulse at

the sampling instant is reversed. If a spike occurred whose time of

occurrence fell into this interval, the decision on the sign of the modu-

lation pulse was reversed. Using this technique, a large portion of the

errors due to spikes were corrected.

Note that doublets are not taken into account in the analysis, i.e.,

no attempt was made to distinguish between the two types of disturbances.

Certainly, doublets could also have exceeded the threshold level eTH and

although they do not cause errors directly, they could lead to errors if

the modulation is reversed when it should not be. The best explanation

that can be presented at this time is that most large doublets occur when

the modulation is near a zero crossing. Hence, they would be rejected

by the above error correction scheme because they occur too far from

the sampling instant.

3.3 Spike detection in an analog FM system

As a first approach to the problem, a spike detector was designed

using the following basic properties of a spike:
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a. The amplitude of the signal plus noise vector, R(t), at the

input to the discriminator is a minimum at the time of occurrence of

a spike.

b. The area under a spike is equal to 2 w. The first property is

used to decide the time at which a spike decision (yes or no) has to be

made. The second property is used to make the spike decision. Fig.

3.3 shows the block diagram of the proposed spike detector. The filter

impulse responses are as follows:

I 1/1-k ---

0< t< TI= _r
co (3.19)

hi(t) = 0 ; elsewhere n

I k/1-k , 0<t< T 2 = _-/--hz(t)= co (3.Z0)
0 , elsewhere m

T I Tro_m _r

where k= sin-_ 2 = sin2-_-n = sin-_. (3.21)

k is so chosen that the modulation (sin com t) cancels out at the output of

the subtractor. [The two filter combination has the effect of a bandpass

filter with a zero at p = jco m" For the case of modulation with a rec-

tangular spectrum, this two filter combination will eliminate most of

the modulation but not all of it. A more complicated filter design would

be required for this case to remove all of the modulation. ] Thus, the

output of the subtractor is the discriminator output noise put through a

filter with the impulse response hlz(t ) as shown in Fig. 3.12. It has the

effect of measuring the area under the input if k/l_ k << 1 or if T 1 << T z.

If spikes are sufficiently infrequent that the interval from 0 to T 2 con-

tains at most one spike, then it can still operate satisfactorily if the R(t)

measurement is also used in the decision box.

Fig. 3. 13 A, B, C shows the various waveforms and thresholds

that enter the decision box. RZ(t) is the output of a square-law amplitude
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detector for the signal plus noise vectors. A e (t) is the output of the

two filter combination which estimates the spike area. The decision box

output is a pulse indicating the detection of a spike when I%?. < R 2 and
O

IAel >A eo. The center of the pulse is the estimated time of occurrence

of the spike and the direction of the pulse is the direction of the spike.

Note that if Ae(t) exceeds the Ae ° threshold due to the area measuring

properties of the negative portion of the hl2(t ) filter shown in Fig. 3.12,

this will not be recorded as a spike as long as R2(t) is greater than 1%2 .
o

This spike detection scheme was simulated on a digital computer

using the following parameters:

Noise Bandwidth = _0 = _/5 rad/sec
n

Modulation Bandwidth = 0_ = _/25 rad/secm

Modulation index = _ = 5 (modulation = _o m cos _m t)

Carrier-to-noise ratio = CNR = 3db

Carrier Amplitude = A = 1.0

k = .628

Spike Area Threshold = Ae = 3.14
O

Signal + Noise Modulus Threshold = R = .5
O

Number of actual spikes present = 42

(Calculated number of spikes based on Ric_paper (l. 7) = 45)

The results were as follows:

Total number of spikes detected = 69

Total number of true spikes detected = 36

Total number of false spikes detected = 33

Net improvement = +3

These results are not satisfactory because too many errors were made,

i.e., too many doublets were identified as spikes.

From Fig. 3.5, it appears that in the no modulation case, doub-

lets can have positive and negative areas up to _ ; a study of the situations
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that could occur with modulation present indicated that this result is also

true for that case. [In both instance s one assumes that the path of the

tip of the noise vector is a smooth curve approximately elliptical in shape

with no ripples, i.e., tangents to the curve do not intersect the curve. ]

However, the presence of spikes during the interval t to t+T 2 and frac-

tions of doublets at the end points of this interval can shift the output of

filter no. 2 sufficiently to produce estimates of doublet areas which ex-

ceed w when filter no. 1 includes the positive or negative area of the

doublet but not both areas. Thus, a stronger test is needed to distinguish

between spikes and doublets.

In the second approach to the problem, the first property, (a), was

retained but two different properties were substituted for (b) to try to re-

duce doublet errors. _These properties are:

b. The energy of a spike is spread over a wide frequency range,

much wider than the modulation bandwidth and wider than the input noise

bandwidth.

c. The direction of a spike is opposite to the direction of the modu-

lation while the reverse is true for doublets.

Again, property (a) is used to decide the time at which a spike de-

cision must be made. The second property, used in conjunction with some

threshold setting identifies a disturbance as a spike if the disturbance has

sufficient energy in a wide bandwidth (>>COn). The third property is used

to distinguish spikes from doublets.

Fig. 3.11can also be used to describe this spike detection system

if the third (dashed) input to the decision box is used. Fig. 3.13 A, B, C

again applies to the operation of the decision box with the following addi-

tional feature:
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If property (c) is not met during the entire spike interval (indi-

cated by the width of pulse at the spike detector output in Fig. 3.13C),

the spike is rejected and a doublet is assumed to have occurred.

The second scheme was tested with the following new parameters:

T 1 -- _/50_ n (max. possible for this program)

k- sin 1--_-= .00628

A _o = 5_nT1

In effect, a spike was recorded if the short term average of the discrim-

inator output (with the modulation removed) exceeded the long term av-

erage by an amount equal to 10 times the input noise bandwidth, _0n, as-

suming the proper spike and modulation directions are observed. Fig.

3.14 shows the essential features of the threshold system. Using this

system, the following results were obtained:

Total number of true spikes present = 42

Total number of spikes detected = 19

Total number of true spikes detected 18

Total number of false spikes detected = 1

Net improvement = +17

In trying to optimize this system, three parameters can be varied, namely

A 0 o, R ° and T 1.

The first few tests showed that the best threshold setting for R o

was R ° - co. Hence, RowaS ignored as a parameter. A8o and T lwere

varied and the results, in terms of the net number of spikes detected

{NSD), are plotted in Fig. 3.15. The best setting for T 1 was . 5 seconds

or =/10¢o n. The best setting for A0 was .7 radians.o

At these two threshold settings, it was possible to add an additional

3 spikes (not shown in Fig. 3.15) to the total of 21 by assuming that prop-

erty (c) could be dropped if a [Ae I = 3 radians threshold was exceeded.
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In other words, if the net area under the disturbance is large enough and

occurs in a very small interval of time, the assumption that the disturb-

ance is a spike is a good one regardless of the sign of the modulation.

Thus, a final improvement of 24 spikes was obtained by spike detection

or 24/42 = 57% of the total number of spikes. In the process, a total of

4 false spikes were also detected.

A study of data obtained in attempting to detect spikes using the

second approach indicates that most errors are due to the occurrence of

spikes and doublets at low values of modulation. Near m = 0, the esti-

mate of the sign of the modulation at the output of filter no. 2 is often in-

correct due to the presence of spikes and doublets within the range of the

filter's impulse response as noted in the previous error analysis. Thus,

errors are often made in this region in deciding whether or not a sharp

disturbance is a spike or a doublet when property c is the deciding factor.

Consequently, it would appear that a reliable technique for estimating the

sign of modulation near m = 0 is required. It is possible that a nonlinear

device between the output of the discriminator and the input of filter no. 2_

which reduces the value of the discriminator output when R(t) is small and

a spike or a doublet is occurring, may improve the estimate of the sign of

the modulation and, thus_ improve the spike detection results. A second

possibility is the use of a threshold on Iml such that no spike decision

would be made unless Iml exceeded some level m
O"

3.4. Spike elimination

The method employed for eliminating the effects of spikes was that

of adding a reverse pulse at the time of occurrence of the detected spike.

In order to do this, the discriminator output is delayed by an amount equal

to the spike detection time plus 1/2 the width of the spike to be added.
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The results of a computer simulation indicated that the method

was satisfactory and that the width and shape of the pulse added was not

significant as long as the pulse had area 2w and had a duration much less

• and height co was foundthan 2w/_ m A rectangular pulse of length 2w/con n

to be satisfactory. The spectrum of the original spike plus the added

pulse is that of a doublet with neglible area in region -corn to _m in the

spectral density domain. Hence, the effect of the spike is completely

removed•

3.5. SNR improvement with spike detection

The amount of the improvement on SNR obtained by spike detection

can be calculated with the aid of Eq. (D. 11) derived in appendix D:

SNR = 3_ 3 CNR
(D. u)

1 + 12 CNR _-_
m

where Ns = number of spikes/second present in the discriminator

(function of _, CNR, COn)

If Nsl = number of spikes/second after spike detection and elimination

then the SNR improvement is

_N s

i + 12 CNR m_
SNRI = (3. Z2)

1 + 12 CNR_
m

In our case

CNR = 2

_--5

f = _/25
m

N = 42/5076
S

Nsl = (42-24)/5076 = 18/5076

Hence, the SNRI is readily found to be 2.03 or about 3db.

A determination of the threshold improvement, however, is a

much more difficult task. In order to do this, one would have to run
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the spike detection program for a very long period so that a sufficient

number of spikes would be included to permit a reasonable amount of

confidence in the final result. At a CNR of 6db, the computer program

has about 1 spike per minute of computer time. Thus, about 42 minutes

of computer time would be needed to obtain results comparable to the

results obtained at a CNR of 3db. In addition, if the result is not good,

additional computer time may be needed to make adjustments in the

parameters T 1 and A0 o. This adjustment appears to be likely since the

statistics of the noise must change if more than 57% of the spikes are to

be eliminated.

Another approach to the determination of threshold for spike de-

tection is to assume that the SNR improvement will be approximately 3db

for CNR's higher than 3db. Using this assumption, the location o£ the

Idb threshold is determined by placing a line 4db below and parallel to

the SNR -- 3_3CNR line which is the zero spikes/second line. The inter-

section of the 4db line with the SNR-CNR curve for the discriminator with

sinusoidal modulation as shown in Fig. 4.4, gives a threshold of 8.3db.

Since the discriminator threshold is 9.5db, the threshold improvement

is i.2db.
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R C

cos.tin jk. ,,
$

Fig, 3.2 Signal and noise vectors in the FlY[ discriminator
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R(t)

Fig. 3.3a Typical graph of the amplitude of the signal

plus noise vector versus time

e3( t)at low/9

-Area= £ 7r

=0

Fig. 3.3b Typical graph of the discriminator output

versus time at low i_
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e3( t )at high ,8

,Area = 0

Fig. 3.3 c Typical graph of the discriminator output

Path of the noise vector

R I

Rz

Signal

• Fig. 3.4 Noise vector path for gaussian noise



Path of the noise vector

iignal

R I

R 2

n I

n2

v

Fig. 3.5 Noise vector path for a doublet

Path of the noise vector

R I

Signal
n 2

#E R2

4_

Fig. 3.6 Noise Vector path for a spike
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T Sm(=)

I/I
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Fig. 3.7a Spectrum of the modulation

v

So(u)

- 2 cun - Wn 0 w n 2 w n

t_J
v

Fig. 3.76 Spectrum of the gaussian noise

l Sd(_)

-2n -_n 0 Wn 2Wn

Fig. 3.7c Spectrum of the doublet noise

W

v

Fig. 3.7d Spectrum of the spike noise
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Doublets

t

t

Positive Spike

t

Negative Spike
(-2 w- area)

_t

Fig. 3.8 Typical shapes of spikes and doublets

l e3(t)

Positive Pulse

I Negotive Spike
-2 lr5 (t-t s)

"_tv

Fig. 3.9 Positive pulse and negative spike in an
FSK system using a discriminator demodulator
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filtered
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filtered negative spike
"n'h (t-t I)

Fig. 3.10 Filtered positive pulse and negative spike
in an FSK system using a discriminator
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hl2(t)

2 2

Fig. 3.1Z Impulse response of the two filter combination
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A)

B) O

-2W. ¸

RZ( t )

'_ ///"%_'_ R z THRESHOLD= Ro2

L_e(t)

/ Z_8 THRESHOLD= Aeot 7,

-L_e THRESHOLD = -A/_

-'-t

:-t

SPIKE DETECTOR OUTPUT

POSITIVE

NEGATIVE

SPIKE

SPIKE

"=tv

Fig. 3.13 Threshold levels in the decision box
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m (t) spike threshold

spike threshold _ / I _

re(t)

i f _

spike threshold

Fig. 3.14 Variation of the spike threshold with time
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Nsd =# spikes removed

30

Ti = 1.0

I0

0
I 2

Fig. 3.15 Graph of the number of spikes removed versus

A 9 o and T 1
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Chapter 4

SIMPLE FM RECEIVERS

There are other FM receivers which are not optimum, but are

worthy of investigation because they can be completely analyzed. Two

such receivers are defined as follows:

+CO

1 f (t-k) [_c-6s] dk (4.1)i. a(t) ----,/ R m --------
0- --(30

and
+CO

1 f R m (t-k)[kc-6s][B+l-(sZ+c2)] dk (4.2)z. a(t)= --_
Or --CO "

D

where s = sin/m + y B, D = functions of the CNR chosen to

c = cosfm + x maximize the SNR

To show that they are FM receivers, consider the case when the

noise is zero. We get

+co

1 f R m (t-k) m (k) dk1. a(t) = --_
O- -CO

+co

1 f R m (t-k) m (k)Z. a(t) = _
0- --CO

[ B/D] dk

= 1 at C NR = CO

(4.3)

(4. 4)

indicating that a(t) is a filtered version of the original modulation.

4.1. Analysis of FM receiver no. 1

In order to perform the analysis of receiver no. 1, certain simple

approximations will be made to find the various spectrums required.

i. Noise: x,y

Bandwidth --a
n

Power = 2N ° an/= ,Az

Sx (a) = Sy (a) =IZN0 °/Az
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Sx_) = 0

Z. Signal: cosfm, sinfm

Bandwidth = _o
n

Power = 1/2

s (_)= s (_)=
C S

b n

o I_I>_
p n

s (_)- 0
Sc

3. Modulation : m

Bandwidth = _m

Power = o'2

S m (_)-] 2_r/c°"
m

From these spectrums, we can derive four other spectrums that will be

needed.

I ZJ_°No/A2, ]_] < _nI. sx_ (_) = sr_ (_) - o , l_l>_n

. sl (_)= s_ (_)--

3. Sc_{a))=Ss_(O_)=I]_O_/_a)n'l_l<_n

Prior to the low pass filter (indicated by .!_ f R(t-×)...dX)the
@oo

output of the FM receiver is _._c - c__swhich can be expanded as follows:

fm fm " fms_c - 6._.s= m + [y (cos ) +x(sinfrn) - y cos - x sin ] + [yx - xy]

It is interesting to note that the terms in the first set of brackets may

be regarded as the high CNR gain terms because they will determine

(4.5)
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SNR at high CNR. The terms in the second set of brackets are the

threshold terms since they will produce the bending of the SNR curve

at low CNR.

In order to find the output noise, one first notes that the modu-

lation term m is uncorrelated with any of the other terms. Therefore,

the spectrum of the noise is the spectrum of the remaining 6 terms.

If we multiply the 6 terms b]r themselves shifted in time, we will get

36 terms, of which 12 of them will have non-zero expected values.

These 12 terms are listed in Fig. 4.1.

Upon examining the 12 terms in Fig. 4.1 we see that their evalu-

ation, which depends upon convolving the appropriate spectrums, can

be reduced to two general convolutions shown in Fig. 4.2 and Fig. 4.3.

The convolutions are readily performed and we get

24to to (4.6)
1. Sl(to) * S2(to)-'- [2 - 3 to + 3--'_ - ], It°I< 2ton

ton to ton
o n > Zto

n

to 3

2 S3(to),S3(to) = n [4 - 6 to + ], Itol< 2ton (a.7)
" I2_r ton to

0 n ,_ Itol > 2ton

Each noise term must then pass thru a rectangular low pass filter of

bandwidth tom"

The corresponding output power is given by

_m

RI(0)- &_ /Sl(to)• Sz(to)dto
o

(4.8)

for the first type of convolution and by

to
rn

R2(o) =1--=f s3(to)• s3(to)dto
o

for the second type of convolution.

(a. 9)
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Evaluating these integrals we get

and

RI(0) =

4

Urn [8p3-6pz+4_- I]
24Tr 2

-

n
n

3_r2

_>1/2

, _-<,/z

I 4

R2(0)= %n [16_3

48:Z - IZpz+11, _>-I/Z
, _-<1/2

Using the appropriate convolution types and convolution coefficients
I

from Fig.4.1, we find that the net output noise power is

4N _r ,- 8N 2
O O

Pnoise = A--'_'-_ [RI(0) ÷ R2(0)] "t"7 [RI(0) ÷ R2(0)]
n

(4.10)

(4. II)

(4.12A)

4N _ 8N 2

[....2_0 + o
A2_o 7

n

4N _ 8N 2

[..._2_0+....2. °
A2_o A 4

n

4

] [4_z] [3z_3 - z4_z + 8p- I]

for _>-I/24
co

] [--V-_ ] forp-<l/ z
3_r 2

The output SNR can now be obtained using Eq.

/
24p4CNR

.,$

[32p3-z4p2+8p-l][1+2c_1

(1.6):

SNR =

(4. IZB)

p>l/2 (4.13)

I. 5CINR
1 , (3-<I/2

1 + ZCN-'---K

Fig. 4.4 shows a plot of Eq. (4.13) for _ = 5 and a plot of Rice's

results for the FM discriminator at _ -- 5. We see that this simple FM

receiver has an improvement factor of approximately _ instead of the 3[3

improvement factor usually associated with FM receivers at high CNR.
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Hence, it can be called a spread spectrum receiver because the improve-

ment is proportional to the amount of spectrum spreading produced by the

modulator. The ldb threshold of this receiver is determined by setting

Therefore, its threshold is fixed at CNR = 3db.

4. Z Analysis of FM receiver no. Z

As in receiver no. I, the various power spectral densities and

autocorrelation functions are specially chosen to simplify the calculations.

In this case, where many autocorrelation functions must be multiplied,

the simple stpo ssible choice is to make all of the dens ity functions gauss Jan

shaped. Fig. 4.5 lists the spectrums and auto correlation functions to

be used.

If

s = sin fro +y (4.15)

(4.16)
#-

c = cosJm -1- x

is substituted in the function

[!c-is] [B + 1 - s z - c 2] (4.17)

a total of 30 terms are obtained which are listed in Fig. 4.6. In column

4 all correlated terms are listed which are below a given term on the

list. Thus a total of 86 correlation functions must be calculated using

the tables in Figs. 4.5 and 4. 0. The details of the calculation are exces-

sively complicated and will no_ be given here. The results are summarized

in Fig. 4.7.

The output signal power for this receiver is contained in term l of

Fig. 4.7, i.e.

R m [(B-2/#) z + 16 R_..

!
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2

_n (B-2/p)2 is the modulation power while 16 R
Z m

R 2 can be lumped with
X

all the rest of the noise terms. Knowing the modulation power out, we

can identify the variable D in Eq. (4.2) as

D = B-Z/P (4. 18)

The calculation of the output noise thru a low pass filter of bandwidth co
m

is again a tedious problem. The spectral density of a11 of the output
i

noise terms in Fig_ 4.7 were expanded and summed to form the following

Taylor series:
2

s(_) " s(o) +-_- §(o)

-" spectral density of the unfiltered output noise.

(4.19)

The filtered out-

put noise power was then calculated using the formula
co _J

.__ +m_¢
Noise power out = _rm S(0) _ 0)

(4.20)

Using this technique, the SNR was evaluated giving the following result:

SNR = 6¢Z_ pZl33
(2p+1)(6_2-I)

B2-4B/P+4/p z

BZ_ZB(p+Z)/p+(p+z)Z/pZ +
(4.21)

2(6_f3P-l) ++
3_3(Zp+I)(6_Z-I)

s_316Fz+_)
(2p+1)(6_2.1)(1+_2)3'/2 +

16pz +
_ m|

_3(zo+I)(613z-1)

(4P+I}(lZpZ-]) +

B must be chosen so that SNR is a maximum. Upon examining Eq. (4.21)

it is seen that the maximation problem can be reduced to finding the maxi-

mum value of

B2+C B+c
o 1

Z=
B2+C B+C

2 3

The result, obtained by setting dZ/dB equal to zero, is

(4.2z)
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-c3) +(c2-c0)(ClC2-C0C3 )CoCZ'2(Cl-C3 ) - 2_/(Cl 2

9max
c_ - 4c3

i i

at J(c1_c3)2 + (c2_c0)(ClC2_C0C3)
(Cl-C3)-

B-
(c z - c 0)

where

4
mCl= + 2
P

4
c - - 2---
2 0

(4.23)

(4.24)

(4.25A)

(4.25B)

(4.25C)

c 3:1 +4p+o__+ 1_]__ (forp, 13>> 1)3132
(4. 25D)

With these substitutions, one finds that

 _abzZ =
max 2 '

(4.z6)

• 2 1

B : I +_.+ 3"_

SNR " 3¢2_3
= 4 P P

"-- 1. 881330

(4.27)

(4. z8)

for p, {3 >> 1

A plot of SNR versus CNR for _ -- 5 using a more accurate formula for

c 3 (obtained by comparing Eqs. (4.21) and (4.22)) is shown in Fig. 4.1.

The graph shows that this receiver represents and improvement over the

previous FM receiver; however, the SNR is still less than that of the dis-

criminator and the threshold is much poorer than the discriminator

threshold.
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No.

Z

3

4

8

9

10

11

lZ

Term

-;_ c_o___ c_o;J"_

YlYz XlX 2

_rlY2 XlX 2

-YlYz;lXz

-Yl 3_ZXlX z

Convolution

Type

Z

2

Convolut ion

Coefficient

I!

II

4N _ /A 4
O

T!

Fig. 4. 1 Table of noise terms for FM receiver no. 1
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-Wn 0

I -
Wn -- Wn 0 Wn

Fig. 4.2 Type 1 convolution

S_(-) S3(w)

j- j_

--_11 --(Ibtl

Fig. 4. 3 Type Z convolution
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SNR
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Fig. 4.4

O CNR

O IO db

FI_ receivers no. 1 and no. ZSNP,. versus C1N'R for
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6

7

8

9

I0

ii

iZ

13

14

15

16

17

18

19

20

21

22

23

24

25

Z6

27

28

29

30
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term

m

y(cos _ m)

x(sin f m)

x(sin [m)

_(cos m)
2

my

2
rnx

',F
xy(cos 2 rm)

xZ(sin z,r m)

_/(cosz! m)

xx(sin 2 ,rm)

P
yy(sin 2 ,I m)

xy(cos Z f m)

y3(cos f m)

xyZ(si;* f m)

2
x y (cos_m)

x 3 (sin f m)

Fray--
x2x(sin f m)

yZx(sin ; m)

xZg(COS ,[ m)

y /Ccos,Im)

y3_x(sin _ m)

y3

x 3

yxZ_

xy2_

x_

coefficient

B

(Z-B)

-(Z-B)

-B

B

-2

-z

+i/z

+I

-i/z

-I

+I

-I

-i

+I

-I

+I

-i

-I

+i

+3

-3

+2

-2

+I

-i

+i

-I

correlated terms

1,6,7

2, 5,15, 17, 19, 22

3, 4, 16, 18, 20, 21

4, 16, 18, 20, 21

5, 15, 17, 19, Z2

6,7

8,10,13

9, Ii

10,12

ii,14

12

13

14

15,17, 19, 22

16, 20, Zl, 24

17, 19, 22, 23

18, 20, 21

19, 22

20, 21

21, 24

22, 23

23

24

25, 26, 27, 28, 29, 30

26, 27, 28, 29, 30

27, 28, 2% 30

28, 29, 30

(I-B)

-(l-B)

29, 30

30

Fig. 4.6 Table of output terms for FM receiver no. Z



Term

Type

m_d*

rood

signal*

noise*

signal*
noise

noise*

noise

C ommon

Factor

R
m

R
s

o

s

R
ss

R
sz

Ro

SZ

1%
x
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Correlation Terms

1% [(B-Z/p)Z+16m z]
m x

F
)z RZ+161% 1%2

-]2R | {B -Z/p 1%. +Z41%..
s a. x x x x XX J

v
p)2 R 3

7
2R.

s L.|(B-z-z/ i%x + 8 x J

r-

4Rs_ L (B-alp) (B-Z-z/p) + 81%2x] Kx_

Rx R2. ]

2R. R 2
s 7. x

8Rsz--sz R Rx

Term
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Chapter 5

CONCLUSIONS

While the ML equation is solvable with the method presented in

section 2.4. 1, the procedure is much too lengthy to be of practical value

at present. In order to reduce the complexity of the process, a way

should be sought to maximize the likelihood function L(c) without eval-

uating it for a large sequence of values of _. If this is not possible, then

the possibility of simplifying the modulation must be considered. The

use of transformed modulation consisting of uncorrelated rectangular

pulses representing the original bandlimited modulation sampled at the

Nyquist rate may lead to significant simplifications. (The original sig-

nal can be reconstructed from the ML estimate of the samples at the

receiver by employing the sampling theorem).

Additional reduction of computer time can be obtained if a phase-

locked loop or some other FM receiver can be designed to supply the

initial approximate solution for the procedure for solving the ML equation.

This will be a necessary step if the equation is to be solved for large

values of T. Otherwise, considerable computer time will be wasted seek-

ing a coarse approximation to the solution. The device that produces

approximate solutions with the highest likelihood would probably be best.

The problem of solving the ML equation for the case of a rectangu-

lar spectrum is not handled satisfactorily by using a Butterworth function

of very high order. It may be possible to construct a differential equation

for the solution by using the fact that the autocorrelation function for this

case,
•2sin_o

Rm(,r) -- m
00 "r

m

is a solution of the time varying differential equation

m
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The generality of the method developed for solving the ML equa-

tion for FM indicates that it could be used to solve the ML equation for

other types of modulation as well as other similar miximization problems

not particularly associated with communications. Thus, a deeper mathe-

matical investigation of the method would be worthwhile to determine the

extent of applicability as well as to determine the circumstances under

which it will lead to erroneous results.

The spike detection system developed in Chapter B is definitely

not optimum; much work remains to be done in this area. It is possible

that the likelihood function developed in section 2.4.2 could be used for

spike detection. However, what is really needed is a function which

measures the likelihood of a spike having occurred in a particular obser-

vation interval based on the data obtained in that interval.

The two non-feedback FM receivers which were analyzed in Chap-

ter 4 were investigated because the determination of an optimum explicit

function of FM data would be of great value. Basically, the reason is

that the determination of the noise paths which cause spikes and the esti-

mation of the number of spikes per second is much easier if the FM re-

ceiver is defined by an explicit function operating on the data followed by

a low pass filter. Rice's (1.7) analysis of the FM discriminator is the

best example of this technique. Thus, an important step toward under-

standing optimum FM receivers would be the formulation of a function

which includes the CNR and other pertinent constants as well as the FM

data and which provides an improvement over the FM discriminator, i.e.,

it results in an FM receiver with an SNR greater than the SNR at the

output of the FM discriminator.
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The attempts to determine thresholds of FM receivers in this

thesis have led us to the conclusion that the method of direct simultation

is too lengthy a process for a digital computer. The amount of data that

must be examined is too great_ other techniques must be developed which

do not require direct simulation. The approach suggested by Spilker (5.1),

for example, is interesting but it would be far more significant if the re-

sults could be identified in some way with specific SNR-CNR points.

A novel approach to the problem, suggested by Rice, is presently

being investigated by Schilling and Osborne. The method consists of de-

termining the response of a given FM receiver to certain typical noise

waveforms. The noise chosen is the most probable n(t) or the expected

n(t) given certain noise parameters. Using this method_ the expected

number of spikes per second and the location of threshold can be deter-

mined.
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APPENDIX A

Inverse autocorrelation matrix operator

The equation

[R] 1 &t

F.T.(R(T))

+ end point terms

for w At << 1
o

where R(T) =

H(jw) =

AT ----

W ----"
0

[RI =

&t

H(jw)
+ end point terms

d
jw= d-E--

a continuous operator + end point terms

R..

13

an autocorrelation function

Fourier Transform of R (T)

At = sampling interval

bandwidth of H(jw) in radians/second

a matrix in which

i = row Iof [R]= R ((i-j) A'r), j =column

a discontinuous or sample operator

(2. 34)

relates a sample operator to a continuous operator. This is an ex-

tremely useful tool since the inversion of a matrix is, in general, a

complicated problem.

To demonstrate that the equation is valid, a simple example

will be evaluated. Let

R (T) ----"e -WO [TI _, r

Then the matrix JR]is given by

(A, i)
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2 3
1 r r r

2
r 1 r r

2
r r 1 r

2
r 3 r r 1

4 r3 2r r r

r4

r3

r2

(A. Z)

which has an inverse

1 -r 0 0 0

-r l+r Z -r 0 0

[R] -1 - _-_ 0 -r l+r 2 -r 0
1 0 0 r l+r 2_r

-- -r

0 0 0 -r 1

(A. 3)

Suppose this matrix operates on a sampled continuous function x(t)

whose matrix is the column vector

x 1

x z

X

3

x 4

x 5
(A.4)

giving the result

n -

Yl

7Z

Y3

74

Y5

Ix I-rx 2

l(l+r')x Z - r(x.+x )

1 I(l+rZ)x _ 3
= r(Xz+X 4)

] (l+r2) x43 r(x3+x 5 )

x - rx 4
(A. S)
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Consider an intermediate value of y given

Yi -- (l+r2) xi - r2{xi'_ + xi+l)
1-r

• At 2
Let x i_l = xi - xi _t + _i etc.2

• At 2
xi+ 1 =x i+x iAt + _i-- + etc.

2

(A. 6)

(A. 7)

(A. 8)

Using the approximations

2 • 2w °1 - r = AT = 2w At
O

r = 1

1-r --- w AT = w At
0 0

{A. 9}

(A.i0)

(A.11)

which are valid if w At <<1, one getso 2

Yi-" z w
Zw ° o xi " =

Zw o

Checking back one finds that
2 2

Wo , 1 Wo - p
H(jw-)

z z T _ = Zw
w -p o

O

x. At
1

(A. 1 2)

(A.13)

so that the equation is valid for intermediate values of i.

initial and final y values one gets

WoX 1 - x 1
Yl - 2w

WoXS+_ 5

Y5 = _Zw
O

+ terms containing At factors

+ terms contain At factors

For the

(A.14)

(A. lS)
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These are the initial and final value corrections to Eq. (Z. 34).

A second derivation of this result, which can be used to verify

the case in which HOw) is a Kthorder Butterworth function, is the

following:

Let [a] - [R][b] At

where [a], [b] --column vectors,

In the limit as

(A.16)

At -=_ 0

N ..-__o

and NAt--_T

Eq. (A. 16) reduces to the equation

a(t) = _R(t-k) b(k)dk

-wl-IIfR (v) = e o

(A. 17)

then a(t)

_(t)

=_e-Wo It-)'[b(k) dk

=w ° _e-Wolt-kl sgn (t-k) b(k)dk

ee 2 _-w ° t-k
a (t) =w ° e J I b(k)dk - 2w b(t)

O

= I+i for t- k>O-1 fort-kKO
where sgn (t-k)

(A.I8)

(A. 19)

(A.z0)

(A. P-l)

By combining Eqs. (A. 18) and(A. 20), one finds that

2 2 2
w a-_ w -p

O O

a(t), p =d/dtb(t) = 2w - 2w
0 0

(A. ZZ)
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Comparing this result with the matrix equation for [b], i.e.,

1
[b] - At [R]-I [a]

one finds that 2 2
w -p

_" o
2w

0

(A.23)

At (A. Z4)

However, this equation does not completely describe the situation;

Eqs. (A. 18) and (A. 19) evaluated at t = 0 and t = T may be combined

to give the results

w a(O)+_(0) = o
O

w a(T)- _ (T)-_ O
o

These equations must be regarded as constraints under which Eq.

(A. 24) is valid. Hence, there is no conflict between Eqs. (A. 24) and

(Z. 34).

(A.zs)

Note that this result automatically eliminates the endpoint terms

when a(t) is the solution of the ML equation because the form of Eq.

(A. 17) with respect to the variable t is identical to the ML equation

(Eq. (2. 26)).

The only place where the calculation [R] -I [a] is called for is

in the determination of the likelihood function (Eq. (2. II) ) for a parti-

cular a(t). However, a(t) will always be generated from a function b(t)

by using an equation similar to Eq. (A. 17). Consequently, the result

oftheoperation[R]-l[a]issimplyb(t)dtand,atthesame time,the

endpoint terms are zero.
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APPENDIX B

SNR for the ML estimate at high CNR,

large T and for a Butterworth modulation

spectrum of order K

The general equation for the SNR for the ML estimate at high

CNR and large T is

2
SNR =

2
w H(_w) dw

Zw CNR 2.
n H (jw) + w
Tr

(z.51)

For a Butterworth modulation spectrum of order K, H (jw) is given by

H (jw) -" o"

ZK-I _r
2Kw m sin---Zl [

ZK 2K (2.61)
%V + W

m

Substituting this into the integral in Eq. (2.51) one finds that

2 2K-I _r Z

co wZH(_w) dw o_ 2K¢ w m sin_ w dwof wnCNR "" 11"

Z 4K¢ Zw CNRw zK-lsin-2_+w m
H(jw) + w n m

OO

K_ 2wZK-im " w of G w2dwsIn --_-- _K 2 2K+2
+w m w +w

2K 2 2K+2
W +W

(B. IA)

(B.iB)

where

2 w3 2K-I Ir
G =,---_-K n CNR Wm sin -_

Z-wZ/ Z
o" n
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The integral in Eq. (B. 1B) could not be found in tables and could not

be evaluated by using the sum of the residues at the poles of the inte-

grand because the roots of the equation

2K+2 2K 2
w + w w+G =0 (B. 3)m

could not be found except for the simple case of K = 1° However,

this problem was avoided by obtaining an approximate value of the inte-

gral for large G.

Let

2K + 2 2K + 2w = Gk (B. 4)

or

k -_wG-1/2K+Z

Then we have

(B. 5)

_w2. d__.w = / G 3/2K+2 k z dk
o G + w2Kw2+w2K+2 2K G1/K+I k2 Gk2K+2o O+w +m m

(B. 6A)

G ( 2K-I )/(2K+2)

00

1 + w 2K G "K/K+I k 2 + k 2K+2
m

(B. 6B)

G(2 K- 1)/(2K+2)
/ k2dk w K

. m

2K+2 GK/__ K+Il+k k dk + etc ]

(B. 6C)
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where the expansion

1 2
= 1-a+a

l+a

has been used.

- etc. , [a[<l

The maximum magnitude of

(B.7)

is

2/4 k2
W

m K • 1 (B. 8)

a= [ kZK+ 2] , -GK/K+I 1 +

ZK
W m 1

._max = GK / K+I (I+K) K ( ZK-I)/( 2K+ 2) (B. 9A)

ZK
W

m 1

CNR sinai K/K+1

(B. 9B)

Hence, at high values of [33 CNR the expansion in Eq. (B. 6C) is valid.

Thus, at high [33CNR, the SNR is given by

2 _ G(ZK-I)/(2K+2)
SNR =

wkm ?k4d k ]2K*Zw 2K-1m s in -'2-K 1 +kZK+2

which reduces to

K+I
SNR _

K
sin K+2 2K sin _ [33 CN

1T 1t

sin

(  K-q/(zK+z)

(B.10)

(z.58)

for 133 CNR >> 1

when the equality (Ref. B.I)
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m

3_

(2K+2) sin _ (B. ii)

is used and all terms after the first term in the expansion in the

denominator of Eq. (B. 10) are neglected. This result checks exactly

with Eqs. (2.52E) and (2.53E) where K =1 and K = oo respectively.
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APPENDIX C

Maximum total solution error

The total solution error for the ML equation is defined as

TSE = -- Rm(t-k) scos a.-csinai)ud dk-ai(t)
ZN° 1

(c.z)

where ai(t) is not the solution but an estimate of the solution which is

.th
being tested at the 1 iteration. An approximate maximum value for

the TSE in the no-noise case can be found by letting

dt

• = sin (m-ai) = 1,s cos a i - csin a 1 (C.2)

the maximum value of the sine function. Then we have

]e [T-q dk dt (C. 3)

ZN o
O

for the case
/ !

R (t) = ff Z -WmlTie , (C. 4)
m

i. e., K - 1. The term a i (t) is small in comparison with the first term

in Eq. (C.1) and may be neglected. Evaluating the integrals in Eq. (C. 3),

one finds that

TSE
max qr

_3 CNRwmT -WJmm T -i -e

For a rough approximation, the equation,

TSE
max

_]CNR (wmT) (wmT-l)

q1"

(c.5)

(2.101)
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may be used since the inequality

-w T
me <<1

will generally be valid Computer studies (with noise present) have

shown that this maximum value is sometimes exceed by a few percent.

Thus, neglecting the noise in order to derive this approximatio=_ does

not introduce a significant error.
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SNR

APPENDIX D

in a spike detection receiver

The basic equation for spike detection is the equation relating

signal-to-noise power at the output to carrier-to-noise power at the

input of the FM receiver as a function of the number of spikes per

second at the output of the receiver. For sine wave modulation, the

receiver input is

S (t) + n(t) = A cos (wt + _ sinWmt) +Ax cos w t - Ay sin w tc c

(D. IA)

s (t)+ n(t)= m (t)cos

where qb = _sinw t,
m

R(t) =

/Wct+_ sinw t+tanl( yc°s_ - xsin#_
m l+xcosqb+ ys in4)//

2 2
+ (ycos_ - xsin_ )

(l+xcos _ + ysin _ )

<D. 2)

The output is given by

-i y cos¢ - x sin_

--_ _ sin Wmt + tan i+ xcos4) + ysin,/

(D. _)

e$ _w cosw t + d [ycos _ - xsin _] + spikes
m m _t-

gaus sian noise

with the first two terms being the signal and the gaussian noise

respectively. The signal power is given by

E (_w cOSWmt) 2 - _2wmZ
m Z (D. 4)
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The gaussian noise power (thru a low pass filter of bandwidth Wm) is

W

_r Sg(W) dw =_°_r w i- (D.5)

where S (w) is the approximate spectral density of the gaussian noise .
g

(See the derivation of Eq. (3.18_ The spike noise power may be calcu-

lated as follows: Let the spikes be random pulses of width E, height

_2_r_ and rate N (spikes/second) as in Figure D. 1. The autocorrelation
s

function for the spikes is shown in Figure D.Z. The spectral density

of the spike noise power at w = O is given by:

+(2O

Ssp(O) = Ioo Rsp(T) dT _ 4elf Ns e (D. 6)

Ssp(O ) = 4 11"zNs

Assuming that Ssp(W) _ Ssp(O) over the bandwidth of the low pass

filter, the spike noise is given by

W

i IomSsp (O)dw
-- = 41rw N
"IT m s

(D. 7)

Thus, the signal-to-noise power ratio (SNR) is equal to

SNR =

[522 m

Z

l_ow3m (I - 3/8[5)+ 4 lr wmN s

3A z _r (D. S)

The carrier-to-noise ratio is given by Eq.

CNR =
AZ_r

4N w
O n

(i.5):

(i.5)
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Hence, the SNR can be written in terms of the CNRas follows:

SNR

Wn CNR

3 lZ_m) CNR
+

m

N
S

where fm= wm/2 it.

(D.9)

Since Wn = _Wm' the equation reduces to

SNR -
3 j53 CNR

3 IZ _ CNR
1 - _3-- + f N s

m
(D. 1 0)

For gaussian modulation, the result is the same if the equations

2 rlw = 2E {m) 2 *- Z _ approximately valid fo
n

Wn = _Wm *- _ Lsinewave modulation J

are used where

m = modulation

0-2= modulation power

Usually, the small correction term 3/8_ is neglected in comparison

with the two other terms in the denominator of Eq. (D. 10}. Thus,

the standard form is

3_ 3 CNR
SNR -

1 + 12 CNR _Ns
f

m
(D. ii)
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pikes (t)

0 • t, t,+t

t2 t2+.

m

_t

Fig. D. 1 Approximation of spikes with a series of random pulses

-E

R,p('r)

(.V)_. %,,_Ns =_ Ns

0
,_-T

Fig. D. Z Autocorrelation function of a series of random pulses
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APPENDIX E

Computer simulation of _aussian random noise

The gaussian random noise with a band limited spectrum is simulated

by filtering a sequence of gaussian random numbers The gaussian

random numbers are obtained by averaging a sequence of random numbers

x. generated by the following recursive scheme:
1

x _1 (E. 1)
O

xi+ 1 (217 (235-- + %) x. mod ) (E. 2)
1

xi+ 1 = 131075 x.1 rood (34, 359, 738, 368)

The period of this sequence is approximately 233"

By averaging 12 of these random numbers at a time, a good approxi-

mation to a gaussian random number is obtained as follows:

Let n

- IX -- X.

n i=l 1
(E. _)

A = 235

y = gaussian random number =

with zero mean, rms

value = i.

I I/A O<xi<AP(xi) = O elsewhere

x - E (x)

_/E(x - E (x))2

]x ÷E(x i) = xiP(x i) dx i = -_- dx =

*2- - (xi- -_- )2p(xi) dxi = T'[

(E. 4)

(E. 5)

(E. 6)

(E.7)

(E. 8)

E (x) = E(xi) = A/Z (E. 9)
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(E. 10A)

(E. 10B)

Therefore,

Y = i 1xi " (E. 11)

For n = 12, the equation reduces to the simple form

Y--_ Z xi -6
.=i

The ratio of the peak value to the rms value for this noise is

(E. 12)

A. / A. = 3._ -_ _ = 6 (E.I'_)

z 4rr 

For n = lZ, we have what is generally calledJ6¢" noise.

Filtering of the gaussian random noise was performed by making

use of the sampling theorem to fill in intermediate values between the

noise samples, Yi' According to the sampling theorem, the uncorre-

lated Yi can be assumed to be coming from the sampling of a process

n"

of bandwidthw n at intervals AT = / w n. If we let Z5i -- Yi' then

the intermediate values, Zi , are given by

-cO

sin (s)- i) ./szi = Zsj (5j-i) ,r/s

j--, -cO

(E. 14)
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The new sequence Z. has a bandwidth w but the samples are now1 n

AT/5 -. v/5w n apart. If we let this time interval equal 1 second,

then the Z i process has a bandwidth equal to v/5 radians/second.

The average power in the two processes, y and Z, are the same,

The great usefulness of this technique is that, on the average, each

gaussian random number produces 5 noise samples. Normally, with

ordinary filtering on a computer, each gaussian random number produces

only one noise sample. Since the computation of gaussian random

numbers is relatively lengthy, this procedure reduces computer time.

For the computer programs, using the six largest terms in the summa-

tion over j in Eq. (E. 14) was found to produce satisfactory results.

The Fortran IV program used for generating gaussian random

numbers is given below:

901 FUNCTI_)N GRN(NR)

902 SRN = 0.

903 D(_ 905 JN= i_12

904 NR = 131075 • NR

905 SRN = SRN + FL_)AT (NR)

906 GRN= 2.91038304 E - ii _SRN - 6.

907 RETURN

END
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APPENDIX F

Computer simulat on of the iterative procedure

for solving the maximum likelihood equation

The computer program employed to solve the ML eq ,ation using

the procedure developed in section Z. 4.1 is given below. The program

is written in FORTRAN IV. An explanation of the various symbols,

constants and equations used is given after the complete program•

1. DIMENSI(_N R(250), T(250), AS(250), AR(250),

sccs(z5o)
Z• DATA CNR, PR, PK, PM, PN/+3.0, 3.5355,

3. DATAPW, PC, NR/.IZ57, 49. 3,1/

4. DATA DB, DC/ -99., -99. /
5. D_) 12 I = i, 250

6. X--. 0444 * FL(_AT (I)

7. S = SIN(X) + PR * GRN (NR)

8. C = C_)S(X) + PR * GRN (NR)

9. R(1) =SQRT (S *S + C *C)

i0. T(1) = ATAN _ (S, C)

ii. AS(1) = O.

iZ. BS(I) = O.

13. D(_ 75 I = I, ii

14. IF (I. EQ.I) GO TO 45
15. DMI -.O.

16. DMZ =O.

17. DM3 = O.

18. D(_ Zl IA = i, Z50

19. DMI = DMI + AS(IA) * BS(IA)

Z0. DM2 = DMZ + AS(IA) * BR(IA) + AR(IA) * BS(IA)

21. DM3 = DM3 + AR(IA) * BR(IA)
Z3. D2 = -98.

Z4. D(_39 IB = I, 41

25. E = .01 *FL(_AT (IA) - .Zl

26. A=O.
27. DN = O.

Z8. D(_ 30 IC - I, 250

2-9. A = A +. 1" (AS(IC) + E * AR(IC))
30. DN = DN + R(IC) * C_)S(T(IC) - A)

31. DA = DB
3Z. DB = DC

33. DC =PN *DN - PM *(DMI+ E * (DM2+E *DM3) )

34. IF (DZ. GE. DB) G_) T(_ 39 . .
35. D1 = DA
36. DZ = DB

37. D3 = DC

BS(ZS0), BR(250),

•01578, .0040/
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38. E2 =E - .01

39. C_NTINUE

40. EB =EZ+.005 • (D3-DI)/(Z. _D2 - D1 - D_)
41. FL =D2 +. 125 • (D3-DI) _ (D3-DI)/(2. _D2-DI-D3)

42. D(_ 44 ID = i, 250

43. AS(ID) = AS(ID) + EB • AR(ID)

44. BS(ID) = BS(ID)+ EB • BR(ID)

45. A=O.

46. SCC = O.

47. D(_ 50 IE = I, 250
48. A = A + •1 _AS(IE)

49. SCC = SCC + R(IE) _ SIN(T(IE) - A)

50. SCCS(IE) = SCC
51. Ul =O.

52. Vl =O.

53. D_) 60 IF = i, Z50
54. J = 251 -IF

55. U2 = -PW_Ul + SCC - SCCS(IF)

56. UI = UI + .I_UZ

57. AR(IF) = Ul

58. VZ = PW • Vl + SCCS(J) - SCC

59. V1 =V] - .I%VP

60. BR(J) = V1
61. ERR = O.

62. TSE --O.

63. D_) 69 IG = 1,250

64. A1 = PK_(AR(IG) + BR(IG) )

65. A4 = AS(IG)
66. ERR _,ERR + (A4 - •444) • • Z

67. TSE = TSE + ABS (AI - A4)

68. AR(IG) = A1 - A4

69 BR(IG) = SCC-SCC(IG) - BS(IG)

70. IF(I. EQ. i) G(_ T_ 75

71. SNR = i0. • AL_)GIO(PC/ERR)
7Z. TSE = .I_TSE

73. WRITE (6,74) I,SNR, TSE, D2, FL, E2, EB

74. F_RM_T (IX,I3, F6. 2,FI0. _, 2FI0.5, ZF8.5)
75. Cq)NTINUE

76. D(_ 78 IH= 1,25

77. K = i0" IH-9

78. AS(IH) = •1*(AS(E) + AS(K+1) + AS(K+2) +

AS(K+3) + AS(K+4) +AS(K+5) + AS(K+6) +

AS(A+7) + AS(K+8) + AS(K+9) )

79. WRITE (6,80) (AS(L), L=I, 25)

80. F(_RMAT (IX, 5FI0.5)

81. ST P
82. END
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Given data:

C NR = 2 = 3db

A=I

w _- _r/'25

m !w --It 5
n

Rm(T) =

(carrier-to-noise ratio)

(carrier amplitude )

(modulation bandsidth, rad/sec. )

(noise bandsidth, rad/sec. )

(modulation index)

2.e-win _T _ (modulation autocorrelation function)

Rn(V) = No 6(T) (noise autocorrelation function)

m(t) = _ = Wn/4_" (modulation)

n(t) = gaussian random numbers (noise)

At = . i (sampling interval, seconds)

N = 250 (number of samples)

Program constants:

PR -- = noise coefficient

2CNR w At
n

w 3 CNR At

PK = n ,m ML equation coefficient

qT

= coefficient of L 2 (likelihood function)

1
PN-

N = coefficient of L 1 (likelihood function)

PC - No "z = SNR coefficient

PW - w = modulation bandwidth
m

NR -- 1 = initial value for random number generator
Constant in step 6 = . 0444 = /¢ At

Constant in step 66 = . 444 =

DB = -99. J

DC = -99. I initial values
DZ =-98.

At =.1; used in steps 29, 48, 56,59 and 72

Program symbols :

AS ( 'I = ai(t) = approximate solution of the ML equation
AR( aR(t) - ai(t ) = solution error

Ir Z

BS ( ) = 2_3CNRw4 At (Wmai - _i)
m
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BR ( ) = Ir (w z (aR .
2R3CNRww 4 At m

rn

ai)- - ))

E =c % range: - • 21 to +. Zl

DA, D_B, DC

DI, D2, D3 _ consecutive values of the likelihood function

EB = value of c corresponding to the peak of the likelihood function;

step 40 estimates location of the peak based on a parabola being

passed thru the points (E-. 02, DI), (E-.01,D2), and (E, DB)

FL -- estimated balue of the likelihood function at the peak of the para-

bola noted above (see step 41)

A = /a = approximate modulation angle

O'

SCC - SCCS ( ) = bl(t) ; see Eq. (Z. 66)

Ul = b2(t); see Eq. (Z. 67A)

Vl =b4(t); see Eq. (2.67C)

ERR = squared error
TSE = total solution error

A1 = aR(t); see step 64 and Eq. (z.68)

SNR = output signal-to-noise ratio in db
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