22 research outputs found

    A Downward-looking Three-dimensional Imaging Method for Airborne FMCW SAR Based on Array Antennas

    Get PDF
    AbstractWith regard to problems in conventional synthetic aperture radar (SAR), such as imaging distortion, beam limitation and failure in acquiring three-dimensional (3-D) information, a downward-looking 3-D imaging method based on frequency modulated continuous wave (FMCW) and digital beamforming (DBF) technology for airborne SAR is presented in this study. Downward-looking 3-D SAR signal model is established first, followed by introduction of virtual antenna optimization factor and discussion of equivalent-phase-center compensation. Then, compensation method is provided according to reside video phase (RVP) and slope term for FMCW SAR. As multiple receiving antennas are applied to downward-looking 3-D imaging SAR, range cell migration correction (RCMC) turns to be more complex, and corrective measures are proposed. In addition, DBF technology is applied in realizing cross-track resolution. Finally, to validate the proposed method, magnitude of slice, peak sidelobe ratio (PSLR), integrated sidelobe ratio (ISLR) and two-dimensional (2-D) contour plot of impulse response function (IRF) of point target in three dimensions are demonstrated. Satisfactory performances are shown by simulation results

    On the Capabilities of the Italian Airborne FMCW AXIS InSAR System

    Get PDF
    Airborne Synthetic Aperture Radar (SAR) systems are gaining increasing interest within the remote sensing community due to their operational flexibility and observation capabilities. Among these systems, those exploiting the Frequency-Modulated Continuous-Wave (FMCW) technology are compact, lightweight, and comparatively low cost. For these reasons, they are becoming very attractive, since they can be easily mounted onboard ever-smaller and highly flexible aerial platforms, like helicopters or unmanned aerial vehicles (UAVs). In this work, we present the imaging and topographic capabilities of a novel Italian airborne SAR system developed in the frame of cooperation between a public research institute (IREA-CNR) and a private company (Elettra Microwave S.r.l.). The system, which is named AXIS (standing for Airborne X-band Interferometric SAR), is based on FMCW technology and is equipped with a single-pass interferometric layout. In the work we first provide a description of the AXIS system. Then, we describe the acquisition campaign carried out in April 2018, just after the system completion. Finally, we perform an analysis of the radar data acquired during the campaign, by presenting a quantitative assessment of the quality of the SLC (Single Look Complex) SAR images and the interferometric products achievable through the system. The overall analysis aims at providing first reference values for future research and operational activities that will be conducted with this sensor

    Geometric distortions in FMCW SAR images due to inaccurate knowledge of electronic radar parameters: analysis and correction by means of corner reflectors

    Get PDF
    Abstract In the last years the Frequency Modulated Continuous Wave (FMCW) technology has been playing an ever greater role in the realization of compact, light and cheap Synthetic Aperture Radar (SAR) systems to be mounted onboard small, low altitude platforms such as airplanes, helicopters and drones. To correctly focus FMCW SAR images, it is necessary to accurately know some system parameters, including the frequency sweep rate of the signal transmitted by the radar. It may happen, however, that this frequency sweep rate is not very accurately measured by the radar provider, and thus an incorrect value of this parameter is used during the SAR data focusing procedure. This may produce serious geometric distortion effects in the focused FMCW SAR images. To circumvent these problems, in this work we present a procedure that estimates the frequency sweep rate actually employed by the FMCW radar, thus providing a key information that can be then profitably used to achieve the correct focusing of the SAR data acquired by the radar system at hand. More specifically, we propose an algorithm that exploits on one side the focused SAR images corrupted by the geometric distortion effects induced by the inaccurate knowledge of this radar parameter, and on the other side the very precise in-situ measurements of the positions of a limited number of Corner Reflectors (CRs) properly deployed over the observed scene. The effectiveness of the proposed algorithm has been tested on real data acquired by an airborne X-band FMCW SAR system

    Validation of Airborne FMCW Radar Measurements of Snow Thickness Over Sea Ice in Antarctica

    Get PDF
    Antarctic sea ice and its snow cover are integral components of the global climate system, yet many aspects of their vertical dimensions are poorly understood, making their representation in global climate models poor. Remote sensing is the key to monitoring the dynamic nature of sea ice and its snow cover. Reliable and accurate snow thickness data are currently a highly sought after data product. Remotely sensed snow thickness measurements can provide an indication of precipitation levels, predicted to increase with effects of climate change in the polar regions. Airborne techniques provide a means for regional-scale estimation of snow depth and distribution. Accurate regional-scale snow thickness data will also facilitate an increase in the accuracy of sea ice thickness retrieval from satellite altimeter freeboard estimates. The airborne data sets are easier to validate with in situ measurements and are better suited to validating satellite algorithms when compared with in situ techniques. This is primarily due to two factors: better chance of getting coincident in situ and airborne data sets and the tractability of comparison between an in situ data set and the airborne data set averaged over the footprint of the antennas. A 28-GHz frequency modulated continuous wave (FMCW) radar loaned by the Center for Remote Sensing of Ice Sheets to the Australian Antarctic Division is used to measure snow thickness over sea ice in East Antarctica. Provided with the radar design parameters, the expected performance parameters of the radar are summarized. The necessary conditions for unambiguous identification of the airsnow and snowice layers for the radar are presented. Roughnesses of the snow and ice surfaces are found to be dominant determinants in the effectiveness of layer identification for this radar. Finally, this paper presents the first in situ validated snow thickness estimates over sea ice in Antarctica derived from an FMCW radar on a helicopterborne platform

    An Improved and Novel De-Ramping Technique for Linear Frequency Modulated Continuous Wave Synthetic Aperture Radar

    Get PDF
    In this paper, a novel de-ramping technique for linear frequency modulated continuous wave (LFM-CW) synthetic aperture radar (SAR), named as the fixed delay deramping technique is introduced. The received and adaptive fixed delay version of transmitted signals was mixed to increase the processing gain of a system. Furthermore, in this study, the practical mode of de-ramping technique for LFM-CW SAR was considered against the related works assumed as the ideal mode. Similar to this work, the practical mode should consider the desired and undesired part of the de-ramped signal. In addition, the closed form equations for processing gain of the proposed deramping technique were derived. All in all, the simulation section illustrates a substantial improvement of the processing gain of the fixed de-ramping based on the proposed approach in comparison to the conventional methods

    Signal Processing for Digital Beamforming FMCW SAR

    Get PDF
    According to the limitations of single channel Frequency Modulation Continuous Wave (FMCW) Synthetic Aperture Radar (SAR), Digital Beamforming (DBF) technology is introduced to improve system performance. Combined with multiple receive apertures, DBF FMCW SAR can obtain high resolution in low pulse repetition frequency, which can increase the processing gain and decrease the sampling frequency. The received signal model of DBF FMCW SAR is derived. The continuous antenna motion which is the main characteristic of FMCW SAR received signal is taken into account in the whole signal processing. The detailed imaging diagram of DBF FMCW SAR is given. A reference system is also demonstrated in the paper by comparing with a single channel FMCW SAR. The validity of the presented diagram is demonstrated with a point target simulation results

    On the frequency sweep rate estimation in airborne fmcw sar systems

    Get PDF
    Use of Frequency Modulated Continuous Wave (FMCW) Synthetic Aperture Radar (SAR) systems requires to accurately know the electronic parameters of the system. In particular, the use of an incorrect value of the Frequency Sweep Rate (FSR) introduces geometric distortions in the focused images. Recently, a method, that we name FSR Estimate Through Corner reflectors (FSRETC), has been proposed to estimate the FSR value actually employed by the radar. The method is based on the use of the SAR image focused with the available erroneous FSR. Moreover, it exploits a number of Corner Reflectors (CRs) deployed over the illuminated area. In this work, we provide an assessment of the capabilities of the FSRETC algorithm. The overall analysis is performed through the use of a real dataset consisting of 10 acquisitions carried out in 2018 (5 acquisitions) and 2019 (5 acquisitions) with an airborne FMCW SAR system. The presented experimental analysis shows that even with a single acquisition, use of two CRs sufficiently far from each other in the range direction, allows achieving an accurate estimate of the searched FSR. Moreover, it is shown that the obtained estimate is very stable over the time. Therefore, the overall procedure can be applied only once, since the estimated values can be safely used for the subsequent missions, at least for the time interval considered in the work, that is, 14 months. In addition, the presented results pose the basis for an enhanced measurement strategy that allows effective application of the FSRETC algorithm through the use of only one CR

    Development of a High-Sensitivity Millimeter-Wave Radar Imaging System for Non-Destructive Testing

    Get PDF
    Murakami Hironaru, Fukuda Taiga, Otera Hiroshi, et al. Development of a High-Sensitivity Millimeter-Wave Radar Imaging System for Non-Destructive Testing. Sensors 24, 4781 (2024); https://doi.org/https://doi.org/10.3390/s24154781.There is an urgent need to develop non-destructive testing (NDT) methods for infrastructure facilities and residences, etc., where human lives are at stake, to prevent collapse due to aging or natural disasters such as earthquakes before they occur. In such inspections, it is desirable to develop a remote, non-contact, non-destructive inspection method that can inspect cracks as small as 0.1 mm on the surface of a structure and damage inside and on the surface of the structure that cannot be seen by the human eye with high sensitivity, while ensuring the safety of the engineers inspecting the structure. Based on this perspective, we developed a radar module (absolute gain of the transmitting antenna: 13.5 dB; absolute gain of the receiving antenna: 14.5 dB) with very high directivity and minimal loss in the signal transmission path between the radar chip and the array antenna, using our previously developed technology. A single-input, multiple-output (SIMO) synthetic aperture radar (SAR) imaging system was developed using this module. As a result of various performance evaluations using this system, we were able to demonstrate that this system has a performance that fully satisfies the abovementioned indices. First, the SNR in millimeter-wave (MM-wave) imaging was improved by 5.4 dB compared to the previously constructed imaging system using the IWR1443BOOST EVM, even though the measured distance was 2.66 times longer. As a specific example of the results of measurements on infrastructure facilities, the system successfully observed cracks as small as 0.1 mm in concrete materials hidden under glass fiber-reinforced tape and black acrylic paint. In this case, measurements were also made from a distance of about 3 m to meet the remote observation requirements, but the radar module with its high-directivity and high-gain antenna proved to be more sensitive in detecting crack structures than measurements made from a distance of 780 mm. In order to estimate the penetration length of MM waves into concrete, an experiment was conducted to measure the penetration of MM waves through a thin concrete slab with a thickness of 3.7 mm. As a result, Λexp = 6.0 mm was obtained as the attenuation distance of MM waves in the concrete slab used. In addition, transmission measurement experiments using a composite material consisting of ceramic tiles and fireproof board, which is a component of a house, and experiments using composite plywood, which is used as a general housing construction material in Japan, succeeded in making perspective observations of defects in the internal structure, etc., which are invisible to the human eye
    corecore