4,148 research outputs found

    American Sign Language alphabet recognition using Microsoft Kinect

    Get PDF
    American Sign Language (ASL) fingerspelling recognition using marker-less vision sensors is a challenging task due to the complexity of ASL signs, self-occlusion of the hand, and limited resolution of the sensors. This thesis describes a new method for ASL fingerspelling recognition using a low-cost vision camera, which is Microsoft\u27s Kinect. A segmented hand configuration is first obtained by using a depth contrast feature based per-pixel classification algorithm. Then, a hierarchical mode-finding method is developed and implemented to localize hand joint positions under kinematic constraints. Finally, a Random Decision Forest (RDF) classifier is built to recognize ASL signs according to the joint angles. To validate the performance of this method, a dataset containing 75,000 samples of 24 static ASL alphabet signs is used. The system is able to achieve a mean accuracy of 92%. We have also used a publicly available dataset from Surrey University to evaluate our method. The results have shown that our method can achieve higher accuracy in recognizing ASL alphabet signs in comparison to the previous benchmarks. --Abstract, page iii

    Sign Language Fingerspelling Classification from Depth and Color Images using a Deep Belief Network

    Full text link
    Automatic sign language recognition is an open problem that has received a lot of attention recently, not only because of its usefulness to signers, but also due to the numerous applications a sign classifier can have. In this article, we present a new feature extraction technique for hand pose recognition using depth and intensity images captured from a Microsoft Kinect sensor. We applied our technique to American Sign Language fingerspelling classification using a Deep Belief Network, for which our feature extraction technique is tailored. We evaluated our results on a multi-user data set with two scenarios: one with all known users and one with an unseen user. We achieved 99% recall and precision on the first, and 77% recall and 79% precision on the second. Our method is also capable of real-time sign classification and is adaptive to any environment or lightning intensity.Comment: Published in 2014 Canadian Conference on Computer and Robot Visio

    A Survey of Applications and Human Motion Recognition with Microsoft Kinect

    Get PDF
    Microsoft Kinect, a low-cost motion sensing device, enables users to interact with computers or game consoles naturally through gestures and spoken commands without any other peripheral equipment. As such, it has commanded intense interests in research and development on the Kinect technology. In this paper, we present, a comprehensive survey on Kinect applications, and the latest research and development on motion recognition using data captured by the Kinect sensor. On the applications front, we review the applications of the Kinect technology in a variety of areas, including healthcare, education and performing arts, robotics, sign language recognition, retail services, workplace safety training, as well as 3D reconstructions. On the technology front, we provide an overview of the main features of both versions of the Kinect sensor together with the depth sensing technologies used, and review literatures on human motion recognition techniques used in Kinect applications. We provide a classification of motion recognition techniques to highlight the different approaches used in human motion recognition. Furthermore, we compile a list of publicly available Kinect datasets. These datasets are valuable resources for researchers to investigate better methods for human motion recognition and lower-level computer vision tasks such as segmentation, object detection and human pose estimation

    Leveraging 2D pose estimators for American Sign Language Recognition

    Get PDF
    Most deaf children born to hearing parents do not have continuous access to language, leading to weaker short-term memory compared to deaf children born to deaf parents. This lack of short-term memory has serious consequences on their mental health and employment rate. To this end, prior work has explored CopyCat, a game where children interact with virtual actors using sign language. While CopyCat has been shown to improve language generation, reception, and repetition, it uses expensive hardware for sign language recognition. This thesis explores the feasibility of using 2D off-the-shelf camera-based pose estimators such as MediaPipe for complementing sign language recognition and moving towards a ubiquitous recognition framework. We compare MediaPipe with 3D pose estimators such as Azure Kinect to determine the feasibility of using off-the-shelf cameras. Furthermore, we develop and compare Hidden Markov Models (HMMs) with state-of-the-art recognition models like Transformers to determine which model is best suited for American Sign Language Recognition in a constrained environment. We find that MediaPipe marginally outperforms Kinect in various experimental settings. Additionally, HMMs outperform Transformers by on average 17.0% on recognition accuracy. Given these results, we believe that a widely deployable game using only a 2D camera is feasible.Undergraduat

    Hand Gesture Recognition for Sign Language Transcription

    Get PDF
    Sign Language is a language which allows mute people to communicate with other mute or non-mute people. The benefits provided by this language, however, disappear when one of the members of a group does not know Sign Language and a conversation starts using that language. In this document, I present a system that takes advantage of Convolutional Neural Networks to recognize hand letter and number gestures from American Sign Language based on depth images captured by the Kinect camera. In addition, as a byproduct of these research efforts, I collected a new dataset of depth images of American Sign Language letters and numbers, and I compared the presented method for image recognition against a similar dataset but for Vietnamese Sign Language. Finally, I present how this work supports my ideas for the future work on a complete system for Sign Language transcription

    Sign Language Recognition using Dynamic Time Warping and Hand Shape Distance Based on Histogram of Oriented Gradient Features

    Get PDF
    ABSTRACT Recognizing sign language is a very challenging task in computer vision. One of the more popular approaches, Dynamic Time Warping (DTW), utilizes hand trajectory information to compare a query sign with those in a database of examples. In this work, we conducted an American Sign Language (ASL) recognition experiment on Kinect sign data using DTW for sign trajectory similarity and Histogram of Oriented Gradient (HoG

    Efficient Kinect Sensor-based Kurdish Sign Language Recognition Using Echo System Network

    Get PDF
    Sign language assists in building communication and bridging gaps in understanding. Automatic sign language recognition (ASLR) is a field that has recently been studied for various sign languages. However, Kurdish sign language (KuSL) is relatively new and therefore researches and designed datasets on it are limited. This paper has proposed a model to translate KuSL into text and has designed a dataset using Kinect V2 sensor. The computation complexity of feature extraction and classification steps, which are serious problems for ASLR, has been investigated in this paper. The paper proposed a feature engineering approach on the skeleton position alone to provide a better representation of the features and avoid the use of all of the image information. In addition, the paper proposed model makes use of recurrent neural networks (RNNs)-based models. Training RNNs is inherently difficult, and consequently, motivates to investigate alternatives. Besides the trainable long short-term memory (LSTM), this study has proposed the untrained low complexity echo system network (ESN) classifier. The accuracy of both LSTM and ESN indicates they can outperform those in state-of-the-art studies. In addition, ESN which has not been proposed thus far for ASLT exhibits comparable accuracy to the LSTM with a significantly lower training time

    STUDY OF HAND GESTURE RECOGNITION AND CLASSIFICATION

    Get PDF
    To recognize different hand gestures and achieve efficient classification to understand static and dynamic hand movements used for communications.Static and dynamic hand movements are first captured using gesture recognition devices including Kinect device, hand movement sensors, connecting electrodes, and accelerometers. These gestures are processed using hand gesture recognition algorithms such as multivariate fuzzy decision tree, hidden Markov models (HMM), dynamic time warping framework, latent regression forest, support vector machine, and surface electromyogram. Hand movements made by both single and double hands are captured by gesture capture devices with proper illumination conditions. These captured gestures are processed for occlusions and fingers close interactions for identification of right gesture and to classify the gesture and ignore the intermittent gestures. Real-time hand gestures recognition needs robust algorithms like HMM to detect only the intended gesture. Classified gestures are then compared for the effectiveness with training and tested standard datasets like sign language alphabets and KTH datasets. Hand gesture recognition plays a very important role in some of the applications such as sign language recognition, robotics, television control, rehabilitation, and music orchestration
    • …
    corecore