19 research outputs found

    A Two-stage approach to harmonic rejection mixing using blind interference cancelling

    Get PDF
    Current analog harmonic rejection mixers typically provide 30–40 dB of harmonic rejection, which is often not sufficient. We present a mixed analog-digital approach to harmonic rejection mixing that uses a digital interference canceler to reject the strongest interferer. Simulations indicate that, given a practical RF scenario, the digital canceler is able to improve the signal-to-interference ratio by 30–45 dB

    Broadband Direct RF Digitization Receivers

    Full text link

    Experimental Verification of a Harmonic-Rejection Mixing Concept using Blind Interference Canceling

    Get PDF
    Abstract—This paper presents the first practical experiments\ud on a harmonic rejection downconverter, which offers up to 75 dB of harmonic rejection, without an RF filter. The downconverter uses a two-stage approach; the first stage is an analog multipath/ multi-phase harmonic rejection mixer followed by a second stage providing additional harmonic rejection based on blind adaptive interference canceling in the discrete-time domain. The aim is to show its functional operation and to find practical performance limitations. Measurement results show that the harmonic rejection of the downconverter is insensitive to frontend nonlinearities and LO phase noise. The canceler cannot cope with DC offsets. The DC offsets are removed by highpass filters. The signal paths used to obtain an estimate of the interference must\ud be designed to provide as much attenuation of the desired signal as possible

    A 12 GHz satellite video receiver: Low noise, low cost prototype model for TV reception from broadcast satellites

    Get PDF
    A 12-channel synchronous phase lock video receiver consisting of an outdoor downconverter unit and an indoor demodulator unit was developed to provide both low noise performance and low cost in production quantities of 1000 units. The prototype receiver can be mass produced at a cost under $1540 without sacrificing system performance. The receiver also has the capability of selecting any of the twelve assigned satellite broadcast channels in the frequency range 11.7 to 12.2 GHz

    Television broadcast from space systems: Technology, costs

    Get PDF
    Broadcast satellite systems are described. The technologies which are unique to both high power broadcast satellites and small TV receive-only earth terminals are also described. A cost assessment of both space and earth segments is included and appendices present both a computer model for satellite cost and the pertinent reported experience with the Japanese BSE

    Software Defined Radio using MATLAB & Simulink and the RTL-SDR

    Get PDF
    The availability of the RTL-SDR for less than $20 brings SDR to the home and work desktops of EE students, professional engineers and the maker community. The RTL-SDR device can be used to acquire and sample RF (radio frequency) signals transmitted in the frequency range 25MHz to 1.75GHz, and using some official software add-ons, these samples can be brought into the MATLAB and Simulink environment for users to develop receivers using first principles DSP algorithms. Signals that the RTL-SDR hardware can receive include: FM radio, UHF band signals, ISM signals, GSM, 3G and LTE mobile radio, GPS and satellite signals, and any that the reader can (legally) transmit of course! In this free book we introduce readers to SDR methods by viewing and analysing downconverted RF signals in the time and frequency domains, and then provide extensive DSP enabled SDR design exercises which the reader can learn from. The hands-on examples begin with simple AM and FM receivers, and move on to the more challenging aspects of PHY layer DSP, where receive filter chains, real-time channelisers, and advanced concepts such as carrier synchronisers, digital PLL designs and QPSK timing and phase synchronisers are implemented. Towards the end of the book, we demonstrate how the RTL-SDR can be used with SDR transmitters to develop a more complete communications system, capable of transmitting text strings and images across the desktop

    Workshop on Microwave Power Transmission and Reception. Workshop Paper Summaries

    Get PDF
    Microwave systems performance and phase control are discussed. Component design and reliability are highlighted. The power amplifiers, radiating elements, rectennas, and solid state configurations are described. The proper sizing of microwave transmission systems is also discussed

    Signal processing for improved MPEG-based communication systems

    Get PDF

    Telecommunication Economics

    Get PDF
    This book constitutes a collaborative and selected documentation of the scientific outcome of the European COST Action IS0605 Econ@Tel "A Telecommunications Economics COST Network" which run from October 2007 to October 2011. Involving experts from around 20 European countries, the goal of Econ@Tel was to develop a strategic research and training network among key people and organizations in order to enhance Europe's competence in the field of telecommunications economics. Reflecting the organization of the COST Action IS0605 Econ@Tel in working groups the following four major research areas are addressed: - evolution and regulation of communication ecosystems; - social and policy implications of communication technologies; - economics and governance of future networks; - future networks management architectures and mechanisms

    Modern Telemetry

    Get PDF
    Telemetry is based on knowledge of various disciplines like Electronics, Measurement, Control and Communication along with their combination. This fact leads to a need of studying and understanding of these principles before the usage of Telemetry on selected problem solving. Spending time is however many times returned in form of obtained data or knowledge which telemetry system can provide. Usage of telemetry can be found in many areas from military through biomedical to real medical applications. Modern way to create a wireless sensors remotely connected to central system with artificial intelligence provide many new, sometimes unusual ways to get a knowledge about remote objects behaviour. This book is intended to present some new up to date accesses to telemetry problems solving by use of new sensors conceptions, new wireless transfer or communication techniques, data collection or processing techniques as well as several real use case scenarios describing model examples. Most of book chapters deals with many real cases of telemetry issues which can be used as a cookbooks for your own telemetry related problems
    corecore