28,202 research outputs found

    Transfer of Graphene with Protective Oxide Layers

    Full text link
    Transfer of graphene, grown by Chemical Vapor Deposition (CVD), to a substrate of choice, typically involves deposition of a polymeric layer (typically, poly(methyl methacrylate, PMMA or polydimethylsiloxane, PDMS). These polymers are quite hard to remove without leaving some residues behind. Here we study a transfer of graphene with a protective thin oxide layer. The thin oxide layer is grown by Atomic Deposition Layer (ALD) on the graphene right after the growth stage on Cu foils. One can further aid the oxide-graphene transfer by depositing a very thin polymer layer on top of the composite (much thinner than the usual thickness) following by a more aggressive polymeric removal methods, thus leaving the graphene intact. We report on the nucleation growth process of alumina and hafnia films on the graphene, their resulting strain and on their optical transmission. We suggest that hafnia is a better oxide to coat the graphene than alumina in terms of uniformity and defects.Comment: 13 pgs, 13 figure

    Leveling coatings for reducing the atomic oxygen defect density in protected graphite fiber epoxy composites

    Get PDF
    Pinholes or other defect sites in a protective oxide coating provide pathways for atomic oxygen in low Earth orbit to reach underlying material. One concept of enhancing the lifetime of materials in low Earth orbit is to apply a leveling coating to the material prior to applying any reflective and protective coatings. Using a surface tension leveling coating concept, a low viscosity epoxy was applied to the surface of several composite coupons. A protective layer of 1000 A of SiO2 was deposited on top of the leveling coating, and the coupons were exposed to an atomic oxygen environment in a plasma asher. Pinhole populations per unit area were estimated by counting the number of undercut sites observed by scanning electron microscopy. Defect density values of 180,000 defects/sq cm were reduced to about 1000 defects/sq cm as a result of the applied leveling coating. These improvements occur at a mass penalty of about 2.5 mg/sq cm

    A new solution for mirror coating in γ\gamma-ray Cherenkov Astronomy

    Get PDF
    In the γ\gamma-ray Cherenkov Astronomy framework mirror coating plays a crucial role in defining the light response of the telescope. We carried out a study for new mirror coating solutions with both a numerical simulation software and a vacuum chamber for small sample production. In this article, we present a new mirror coating solution consisting of a 28-layer interferometric SiO2_{2}-TiO2_{2}-HfO2_{2} design deposited on a glass substrate, whose average reflectance is above 90%90\% for normally incident light in the wavelength range between 300 and 550 nm.Comment: 6 pages, 5 figures. Article submitted to Experimental Astronomy, the final publication is available at link.springer.co

    Molten salt corrosion of SiC and Si3N4

    Get PDF
    Industrial systems such as heat engines and heat exchangers involve harsh environments. The structural materials are subjected to high temperatures as well as corrosive gases and condensed phases. Past experience with metal alloys has shown that these condensed phases can be particularly corrosive and are often the limiting factor in the operation of these systems. In a heat engine the most common condensed corrodent is Na2SO4 whereas in a heat exchanger an oxide slag may be present. The primary emphasis is on Na2SO4 induced corrosion, however, similarities and differences to oxide slag are also discussed. The extensive research on corrosion of metal alloys has led to understanding and controlling corrosion for these materials. Currently silicon based ceramics are prime candidates for the applications discussed. Therefore it is important to understand the effects of condensed phase deposits on this emerging class of high temperature materials. Both the thermodynamic and strength of the ceramic is also examined. Finally some control strategies for corrosion of silicon based ceramics are explored

    Interface Engineering to Create a Strong Spin Filter Contact to Silicon

    Get PDF
    Integrating epitaxial and ferromagnetic Europium Oxide (EuO) directly on silicon is a perfect route to enrich silicon nanotechnology with spin filter functionality. To date, the inherent chemical reactivity between EuO and Si has prevented a heteroepitaxial integration without significant contaminations of the interface with Eu silicides and Si oxides. We present a solution to this long-standing problem by applying two complementary passivation techniques for the reactive EuO/Si interface: (ii) an insituin\:situ hydrogen-Si (001)(001) passivation and (iiii) the application of oxygen-protective Eu monolayers --- without using any additional buffer layers. By careful chemical depth profiling of the oxide-semiconductor interface via hard x-ray photoemission spectroscopy, we show how to systematically minimize both Eu silicide and Si oxide formation to the sub-monolayer regime --- and how to ultimately interface-engineer chemically clean, heteroepitaxial and ferromagnetic EuO/Si (001)(001) in order to create a strong spin filter contact to silicon.Comment: 11 pages of scientific paper, 10 high-resolution color figures. Supplemental information on the thermodynamic problem available (PDF). High-resolution abstract graphic available (PNG). Original research (2016

    Multi-silicon ridge nanofabrication by repeated edge lithography

    Get PDF
    We present a multi-Si nanoridge fabrication scheme and its application in nanoimprint\ud lithography (NIL). Triple Si nanoridges approximately 120 nm high and 40 nm wide separated\ud by 40 nm spacing are fabricated and successfully applied as a stamp in nanoimprint lithography.\ud The fabrication scheme, using a full-wet etching procedure in combination with repeated edge\ud lithography, consists of hot H3PO4 acid SiNx retraction etching, 20% KOH Si etching, 50% HF\ud SiNx retraction etching and LOCal Oxidation of Silicon (LOCOS). Si nanoridges with smooth\ud vertical sidewalls are fabricated by using Si 110 substrates and KOH etching. The presented\ud technology utilizes a conventional photolithography technique, and the fabrication of multi-Si\ud nanoridges on a full wafer scale has been demonstrated

    Phase transition between (2 x 1) and c(8 x 8) reconstructions observed on the Si(001) surface around 600C

    Full text link
    The Si(001) surface subjected to different treatments in ultrahigh vacuum molecular beam epitaxy chamber for SiO2_2 film decomposition has been in situ investigated by reflected high energy electron diffraction (RHEED) and high resolution scanning tunnelling microscopy (STM). A transition between (2 x 1) and (4 x 4) RHEED patterns was observed. The (4 x 4) pattern arose at T <~600C during sample posttreatment cooling. The reconstruction was observed to be reversible. The c(8 x 8) structure was revealed by STM at room temperature on the same samples. The (4 x 4) patterns have been evidenced to be a manifestation of the c(8 x 8) surface structure in RHEED. The phase transition appearance has been found to depend on thermal treatment conditions and sample cooling rate.Comment: 5 pages, 5 figures. To appear in JETP Letters (Pis'ma v ZhETF, 10 September 2010

    High-temperature durability considerations for HSCT combustor

    Get PDF
    The novel combustor designs for the High Speed Civil Transport will require high temperature materials with long term environmental stability. Higher liner temperatures than in conventional combustors and the need for reduced weight necessitates the use of advanced ceramic matrix composites. The combustor environment is defined at the current state of design, the major degradation routes are discussed for each candidate ceramic material, and where possible, the maximum use temperatures are defined for these candidate ceramics
    corecore