3,782 research outputs found

    Deep Learning for Edge Computing Applications: A State-of-the-Art Survey

    Get PDF
    With the booming development of Internet-of-Things (IoT) and communication technologies such as 5G, our future world is envisioned as an interconnected entity where billions of devices will provide uninterrupted service to our daily lives and the industry. Meanwhile, these devices will generate massive amounts of valuable data at the network edge, calling for not only instant data processing but also intelligent data analysis in order to fully unleash the potential of the edge big data. Both the traditional cloud computing and on-device computing cannot sufficiently address this problem due to the high latency and the limited computation capacity, respectively. Fortunately, the emerging edge computing sheds a light on the issue by pushing the data processing from the remote network core to the local network edge, remarkably reducing the latency and improving the efficiency. Besides, the recent breakthroughs in deep learning have greatly facilitated the data processing capacity, enabling a thrilling development of novel applications, such as video surveillance and autonomous driving. The convergence of edge computing and deep learning is believed to bring new possibilities to both interdisciplinary researches and industrial applications. In this article, we provide a comprehensive survey of the latest efforts on the deep-learning-enabled edge computing applications and particularly offer insights on how to leverage the deep learning advances to facilitate edge applications from four domains, i.e., smart multimedia, smart transportation, smart city, and smart industry. We also highlight the key research challenges and promising research directions therein. We believe this survey will inspire more researches and contributions in this promising field

    A survey on big multimedia data processing and management in smart cities

    Full text link
    © 2019 Association for Computing Machinery. All rights reserved. Integration of embedded multimedia devices with powerful computing platforms, e.g., machine learning platforms, helps to build smart cities and transforms the concept of Internet of Things into Internet of Multimedia Things (IoMT). To provide different services to the residents of smart cities, the IoMT technology generates big multimedia data. The management of big multimedia data is a challenging task for IoMT technology. Without proper management, it is hard to maintain consistency, reusability, and reconcilability of generated big multimedia data in smart cities. Various machine learning techniques can be used for automatic classification of raw multimedia data and to allow machines to learn features and perform specific tasks. In this survey, we focus on various machine learning platforms that can be used to process and manage big multimedia data generated by different applications in smart cities. We also highlight various limitations and research challenges that need to be considered when processing big multimedia data in real-time

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Traffic Optimization Through Waiting Prediction and Evolutive Algorithms

    Get PDF
    Traffic optimization systems require optimization procedures to optimize traffic light timing settings in order to improve pedestrian and vehicle mobility. Traffic simulators allow obtaining accurate estimates of traffic behavior by applying different timing configurations, but require considerable computational time to perform validation tests. For this reason, this project proposes the development of traffic optimizations based on the estimation of vehicle waiting times through the use of different prediction techniques and the use of this estimation to subsequently apply evolutionary algorithms that allow the optimizations to be carried out. The combination of these two techniques leads to a considerable reduction in calculation time, which makes it possible to apply this system at runtime. The tests have been carried out on a real traffic junction on which different traffic volumes have been applied to analyze the performance of the system

    IEEE Access Special Section Editorial: Big Data Technology and Applications in Intelligent Transportation

    Get PDF
    During the last few years, information technology and transportation industries, along with automotive manufacturers and academia, are focusing on leveraging intelligent transportation systems (ITS) to improve services related to driver experience, connected cars, Internet data plans for vehicles, traffic infrastructure, urban transportation systems, traffic collaborative management, road traffic accidents analysis, road traffic flow prediction, public transportation service plan, personal travel route plans, and the development of an effective ecosystem for vehicles, drivers, traffic controllers, city planners, and transportation applications. Moreover, the emerging technologies of the Internet of Things (IoT) and cloud computing have provided unprecedented opportunities for the development and realization of innovative intelligent transportation systems where sensors and mobile devices can gather information and cloud computing, allowing knowledge discovery, information sharing, and supported decision making. However, the development of such data-driven ITS requires the integration, processing, and analysis of plentiful information obtained from millions of vehicles, traffic infrastructures, smartphones, and other collaborative systems like weather stations and road safety and early warning systems. The huge amount of data generated by ITS devices is only of value if utilized in data analytics for decision-making such as accident prevention and detection, controlling road risks, reducing traffic carbon emissions, and other applications which bring big data analytics into the picture

    Predicting Transportation Carbon Emission with Urban Big Data

    Get PDF
    Transportation carbon emission is a significant contributor to the increase of greenhouse gases, which directly threatens the change of climate and human health. Under the pressure of the environment, it is very important to master the information of transportation carbon emission in real time. In the traditional way, we get the information of the transportation carbon emission by calculating the combustion of fossil fuel in the transportation sector. However, it is very difficult to obtain the real-time and accurate fossil fuel combustion in the transportation field. In this paper, we predict the real-time and fine-grained transportation carbon emission information in the whole city, based on the spatio-temporal datasets we observed in the city, that is taxi GPS data, transportation carbon emission data, road networks, points of interests (POIs), and meteorological data. We propose a three-layer perceptron neural network (3-layerPNN) to learn the characteristics of collected data and infer the transportation carbon emission. We evaluate our method with extensive experiments based on five real data sources obtained in Zhuhai, China. The results show that our method has advantages over the well-known three machine learning methods (Gaussian Naive Bayes, Linear Regression, and Logistic Regression) and two deep learning methods (Stacked Denoising Autoencoder and Deep Belief Networks)

    Meta-Generalization for Multiparty Privacy Learning to Identify Anomaly Multimedia Traffic in Graynet

    Full text link
    Identifying anomaly multimedia traffic in cyberspace is a big challenge in distributed service systems, multiple generation networks and future internet of everything. This letter explores meta-generalization for a multiparty privacy learning model in graynet to improve the performance of anomaly multimedia traffic identification. The multiparty privacy learning model in graynet is a globally shared model that is partitioned, distributed and trained by exchanging multiparty parameters updates with preserving private data. The meta-generalization refers to discovering the inherent attributes of a learning model to reduce its generalization error. In experiments, three meta-generalization principles are tested as follows. The generalization error of the multiparty privacy learning model in graynet is reduced by changing the dimension of byte-level imbedding. Following that, the error is reduced by adapting the depth for extracting packet-level features. Finally, the error is reduced by adjusting the size of support set for preprocessing traffic-level data. Experimental results demonstrate that the proposal outperforms the state-of-the-art learning models for identifying anomaly multimedia traffic.Comment: Correct some typo
    corecore