897 research outputs found

    AI of Brain and Cognitive Sciences: From the Perspective of First Principles

    Full text link
    Nowadays, we have witnessed the great success of AI in various applications, including image classification, game playing, protein structure analysis, language translation, and content generation. Despite these powerful applications, there are still many tasks in our daily life that are rather simple to humans but pose great challenges to AI. These include image and language understanding, few-shot learning, abstract concepts, and low-energy cost computing. Thus, learning from the brain is still a promising way that can shed light on the development of next-generation AI. The brain is arguably the only known intelligent machine in the universe, which is the product of evolution for animals surviving in the natural environment. At the behavior level, psychology and cognitive sciences have demonstrated that human and animal brains can execute very intelligent high-level cognitive functions. At the structure level, cognitive and computational neurosciences have unveiled that the brain has extremely complicated but elegant network forms to support its functions. Over years, people are gathering knowledge about the structure and functions of the brain, and this process is accelerating recently along with the initiation of giant brain projects worldwide. Here, we argue that the general principles of brain functions are the most valuable things to inspire the development of AI. These general principles are the standard rules of the brain extracting, representing, manipulating, and retrieving information, and here we call them the first principles of the brain. This paper collects six such first principles. They are attractor network, criticality, random network, sparse coding, relational memory, and perceptual learning. On each topic, we review its biological background, fundamental property, potential application to AI, and future development.Comment: 59 pages, 5 figures, review articl

    Understanding the Role of Dynamics in Brain Networks: Methods, Theory and Application

    Get PDF
    The brain is inherently a dynamical system whose networks interact at multiple spatial and temporal scales. Understanding the functional role of these dynamic interactions is a fundamental question in neuroscience. In this research, we approach this question through the development of new methods for characterizing brain dynamics from real data and new theories for linking dynamics to function. We perform our study at two scales: macro (at the level of brain regions) and micro (at the level of individual neurons). In the first part of this dissertation, we develop methods to identify the underlying dynamics at macro-scale that govern brain networks during states of health and disease in humans. First, we establish an optimization framework to actively probe connections in brain networks when the underlying network dynamics are changing over time. Then, we extend this framework to develop a data-driven approach for analyzing neurophysiological recordings without active stimulation, to describe the spatiotemporal structure of neural activity at different timescales. The overall goal is to detect how the dynamics of brain networks may change within and between particular cognitive states. We present the efficacy of this approach in characterizing spatiotemporal motifs of correlated neural activity during the transition from wakefulness to general anesthesia in functional magnetic resonance imaging (fMRI) data. Moreover, we demonstrate how such an approach can be utilized to construct an automatic classifier for detecting different levels of coma in electroencephalogram (EEG) data. In the second part, we study how ongoing function can constraint dynamics at micro-scale in recurrent neural networks, with particular application to sensory systems. Specifically, we develop theoretical conditions in a linear recurrent network in the presence of both disturbance and noise for exact and stable recovery of dynamic sparse stimuli applied to the network. We show how network dynamics can affect the decoding performance in such systems. Moreover, we formulate the problem of efficient encoding of an afferent input and its history in a nonlinear recurrent network. We show that a linear neural network architecture with a thresholding activation function is emergent if we assume that neurons optimize their activity based on a particular cost function. Such an architecture can enable the production of lightweight, history-sensitive encoding schemes

    Nearly extensive sequential memory lifetime achieved by coupled nonlinear neurons

    Full text link
    Many cognitive processes rely on the ability of the brain to hold sequences of events in short-term memory. Recent studies have revealed that such memory can be read out from the transient dynamics of a network of neurons. However, the memory performance of such a network in buffering past information has only been rigorously estimated in networks of linear neurons. When signal gain is kept low, so that neurons operate primarily in the linear part of their response nonlinearity, the memory lifetime is bounded by the square root of the network size. In this work, I demonstrate that it is possible to achieve a memory lifetime almost proportional to the network size, "an extensive memory lifetime", when the nonlinearity of neurons is appropriately utilized. The analysis of neural activity revealed that nonlinear dynamics prevented the accumulation of noise by partially removing noise in each time step. With this error-correcting mechanism, I demonstrate that a memory lifetime of order N/logNN/\log N can be achieved.Comment: 21 pages, 5 figures, the manuscript has been accepted for publication in Neural Computatio
    corecore