7,986 research outputs found

    Short-term electric load forecasting based on a neural fuzzy network

    Get PDF
    Centre for Multimedia Signal Processing, Department of Electronic and Information Engineering2003-2004 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Short-Term Electric Load Forecasting Based on a Neural Fuzzy Network

    Full text link
    Electric load forecasting is essential to improve the reliability of the ac power line data network and provide optimal load scheduling in an intelligent home system. In this paper, a short-term load forecasting realized by a neural fuzzy network (NFN) and a modified genetic algorithm (GA) is proposed. It can forecast the hourly load accurately with respect to different day types and weather information. By introducing new genetic operators, the modified GA performs better than the traditional GA under some benchmark test functions. The optimal network structure can be found by the modified GA when switches in the links of the network are introduced. The membership functions and the number of rules of the NFN can be obtained automatically. Results for a short-term load forecasting will be given

    Short-Term Load Forecasting for Microgrids Based on Artificial Neural Networks

    Get PDF
    Electricity is indispensable and of strategic importance to national economies. Consequently, electric utilities make an effort to balance power generation and demand in order to offer a good service at a competitive price. For this purpose, these utilities need electric load forecasts to be as accurate as possible. However, electric load depends on many factors (day of the week, month of the year, etc.), which makes load forecasting quite a complex process requiring something other than statistical methods. This study presents an electric load forecast architectural model based on an Artificial Neural Network (ANN) that performs Short-Term Load Forecasting (STLF). In this study, we present the excellent results obtained, and highlight the simplicity of the proposed model. Load forecasting was performed in a geographic location of the size of a potential microgrid, as microgrids appear to be the future of electric power supply.Hernández, L.; Baladrón Zorita, C.; Aguiar Pérez, JM.; Carro Martínez, B.; Sanchez-Esguevillas, A.; Lloret, J. (2013). Short-Term Load Forecasting for Microgrids Based on Artificial Neural Networks. Energies. 6(3):1385-1408. doi:10.3390/en6031385S1385140863Booklets European Comission. Your Guide to the Lisbon Treaty 2009http://ec.europa.eu/publications/booklets/others/84/en.pdfHernandez, L., Baladron, C., Aguiar, J. M., Carro, B., Sanchez-Esguevillas, A., Lloret, J., … Cook, D. (2013). A multi-agent system architecture for smart grid management and forecasting of energy demand in virtual power plants. IEEE Communications Magazine, 51(1), 106-113. doi:10.1109/mcom.2013.6400446http://ec.europa.eu/energy/technology/set_plan/set_plan_en.htmFUTURED—Spanish Technological Platform for Energy Grids Home Pagehttp://www.futured.es/European Technology Platform for Electricity Networks of the Future—SmartGrids ETP Home Pagehttp://www.smartgrids.eu/Kim, H.-M., Kinoshita, T., & Shin, M.-C. (2010). A Multiagent System for Autonomous Operation of Islanded Microgrids Based on a Power Market Environment. Energies, 3(12), 1972-1990. doi:10.3390/en3121972Kim, H.-M., Lim, Y., & Kinoshita, T. (2012). An Intelligent Multiagent System for Autonomous Microgrid Operation. Energies, 5(9), 3347-3362. doi:10.3390/en5093347Xiao, Z., Li, T., Huang, M., Shi, J., Yang, J., Yu, J., & Wu, W. (2010). Hierarchical MAS Based Control Strategy for Microgrid. Energies, 3(9), 1622-1638. doi:10.3390/en3091622Hong, Y.-Y., & Chou, J.-H. (2012). Nonintrusive Energy Monitoring for Microgrids Using Hybrid Self-Organizing Feature-Mapping Networks. Energies, 5(7), 2578-2593. doi:10.3390/en5072578Douglas, A. P., Breipohl, A. M., Lee, F. N., & Adapa, R. (1998). The impacts of temperature forecast uncertainty on Bayesian load forecasting. IEEE Transactions on Power Systems, 13(4), 1507-1513. doi:10.1109/59.736298Sadownik, R., & Barbosa, E. P. (1999). Short-term forecasting of industrial electricity consumption in Brazil. Journal of Forecasting, 18(3), 215-224. doi:10.1002/(sici)1099-131x(199905)18:33.0.co;2-bHuang, S. R. (1997). Short-term load forecasting using threshold autoregressive models. IEE Proceedings - Generation, Transmission and Distribution, 144(5), 477. doi:10.1049/ip-gtd:19971144Infield, D. G., & Hill, D. C. (1998). Optimal smoothing for trend removal in short term electricity demand forecasting. IEEE Transactions on Power Systems, 13(3), 1115-1120. doi:10.1109/59.709108Sargunaraj, S., Sen Gupta, D. P., & Devi, S. (1997). Short-term load forecasting for demand side management. IEE Proceedings - Generation, Transmission and Distribution, 144(1), 68. doi:10.1049/ip-gtd:19970599Hong-Tzer Yang, & Chao-Ming Huang. (1998). A new short-term load forecasting approach using self-organizing fuzzy ARMAX models. IEEE Transactions on Power Systems, 13(1), 217-225. doi:10.1109/59.651639Hong-Tzer Yang, Chao-Ming Huang, & Ching-Lien Huang. (1996). Identification of ARMAX model for short term load forecasting: an evolutionary programming approach. IEEE Transactions on Power Systems, 11(1), 403-408. doi:10.1109/59.486125Yu, Z. (1996). A temperature match based optimization method for daily load prediction considering DLC effect. IEEE Transactions on Power Systems, 11(2), 728-733. doi:10.1109/59.496146Charytoniuk, W., Chen, M. S., & Van Olinda, P. (1998). Nonparametric regression based short-term load forecasting. IEEE Transactions on Power Systems, 13(3), 725-730. doi:10.1109/59.708572Taylor, J. W., & Majithia, S. (2000). Using combined forecasts with changing weights for electricity demand profiling. Journal of the Operational Research Society, 51(1), 72-82. doi:10.1057/palgrave.jors.2600856Ramanathan, R., Engle, R., Granger, C. W. J., Vahid-Araghi, F., & Brace, C. (1997). Short-run forecasts of electricity loads and peaks. International Journal of Forecasting, 13(2), 161-174. doi:10.1016/s0169-2070(97)00015-0Soliman, S. A., Persaud, S., El-Nagar, K., & El-Hawary, M. E. (1997). Application of least absolute value parameter estimation based on linear programming to short-term load forecasting. International Journal of Electrical Power & Energy Systems, 19(3), 209-216. doi:10.1016/s0142-0615(96)00048-8Hyde, O., & Hodnett, P. F. (1997). An adaptable automated procedure for short-term electricity load forecasting. IEEE Transactions on Power Systems, 12(1), 84-94. doi:10.1109/59.574927Ku-Long Ho, Yuan-Yih Hsu, Chuan-Fu Chen, Tzong-En Lee, Chih-Chien Liang, Tsau-Shin Lai, & Kung-Keng Chen. (1990). Short term load forecasting of Taiwan power system using a knowledge-based expert system. IEEE Transactions on Power Systems, 5(4), 1214-1221. doi:10.1109/59.99372Rahman, S., & Hazim, O. (1993). A generalized knowledge-based short-term load-forecasting technique. IEEE Transactions on Power Systems, 8(2), 508-514. doi:10.1109/59.260833Mori, H., & Kobayashi, H. (1996). Optimal fuzzy inference for short-term load forecasting. IEEE Transactions on Power Systems, 11(1), 390-396. doi:10.1109/59.486123Bakirtzis, A. G., Theocharis, J. B., Kiartzis, S. J., & Satsios, K. J. (1995). Short term load forecasting using fuzzy neural networks. IEEE Transactions on Power Systems, 10(3), 1518-1524. doi:10.1109/59.466494Papadakis, S. E., Theocharis, J. B., Kiartzis, S. J., & Bakirtzis, A. G. (1998). A novel approach to short-term load forecasting using fuzzy neural networks. IEEE Transactions on Power Systems, 13(2), 480-492. doi:10.1109/59.667372Elman, J. L. (1990). Finding Structure in Time. Cognitive Science, 14(2), 179-211. doi:10.1207/s15516709cog1402_1Elman, J. L. (1991). Distributed representations, simple recurrent networks, and grammatical structure. Machine Learning, 7(2-3), 195-225. doi:10.1007/bf00114844Kohonen, T. (1990). The self-organizing map. Proceedings of the IEEE, 78(9), 1464-1480. doi:10.1109/5.58325Baladrón, C., Aguiar, J. M., Calavia, L., Carro, B., Sánchez-Esguevillas, A., & Hernández, L. (2012). Performance Study of the Application of Artificial Neural Networks to the Completion and Prediction of Data Retrieved by Underwater Sensors. Sensors, 12(2), 1468-1481. doi:10.3390/s120201468Martínez-Martínez, V., Baladrón, C., Gomez-Gil, J., Ruiz-Ruiz, G., Navas-Gracia, L. M., Aguiar, J. M., & Carro, B. (2012). Temperature and Relative Humidity Estimation and Prediction in the Tobacco Drying Process Using Artificial Neural Networks. Sensors, 12(10), 14004-14021. doi:10.3390/s121014004Park, D. C., El-Sharkawi, M. A., Marks, R. J., Atlas, L. E., & Damborg, M. J. (1991). Electric load forecasting using an artificial neural network. IEEE Transactions on Power Systems, 6(2), 442-449. doi:10.1109/59.76685Ho, K. L., Hsu, Y.-Y., & Yang, C.-C. (1992). Short term load forecasting using a multilayer neural network with an adaptive learning algorithm. IEEE Transactions on Power Systems, 7(1), 141-149. doi:10.1109/59.141697Drezga, I., & Rahman, S. (1998). Input variable selection for ANN-based short-term load forecasting. IEEE Transactions on Power Systems, 13(4), 1238-1244. doi:10.1109/59.736244Drezga, I., & Rahman, S. (1999). Short-term load forecasting with local ANN predictors. IEEE Transactions on Power Systems, 14(3), 844-850. doi:10.1109/59.780894Lee, K. Y., Cha, Y. T., & Park, J. H. (1992). Short-term load forecasting using an artificial neural network. IEEE Transactions on Power Systems, 7(1), 124-132. doi:10.1109/59.141695Lu, C.-N., Wu, H.-T., & Vemuri, S. (1993). Neural network based short term load forecasting. IEEE Transactions on Power Systems, 8(1), 336-342. doi:10.1109/59.221223Papalexopoulos, A. D., Shangyou Hao, & Tie-Mao Peng. (1994). An implementation of a neural network based load forecasting model for the EMS. IEEE Transactions on Power Systems, 9(4), 1956-1962. doi:10.1109/59.331456Bakirtzls, A. G., Petridls, V., Klartzis, S. J., Alexladls, M. C., & Malssls, A. H. (1996). A neural network short term load forecasting model for the Greek power system. IEEE Transactions on Power Systems, 11(2), 858-863. doi:10.1109/59.496166AlFuhaid, A. S., El-Sayed, M. A., & Mahmoud, M. S. (1997). Cascaded artificial neural networks for short-term load forecasting. IEEE Transactions on Power Systems, 12(4), 1524-1529. doi:10.1109/59.627852Lamedica, R., Prudenzi, A., Sforna, M., Caciotta, M., & Cencellli, V. O. (1996). A neural network based technique for short-term forecasting of anomalous load periods. IEEE Transactions on Power Systems, 11(4), 1749-1756. doi:10.1109/59.544638Srinivasan, D. (1994). Forecasting daily load curves using a hybrid fuzzy-neural approach. IEE Proceedings - Generation, Transmission and Distribution, 141(6), 561. doi:10.1049/ip-gtd:19941288Kwang-Ho Kim, Jong-Keun Park, Kab-Ju Hwang, & Sung-Hak Kim. (1995). Implementation of hybrid short-term load forecasting system using artificial neural networks and fuzzy expert systems. IEEE Transactions on Power Systems, 10(3), 1534-1539. doi:10.1109/59.466492Daneshdoost, M., Lotfalian, M., Bumroonggit, G., & Ngoy, J. P. (1998). Neural network with fuzzy set-based classification for short-term load forecasting. IEEE Transactions on Power Systems, 13(4), 1386-1391. doi:10.1109/59.736281Senjyu, T., Mandal, P., Uezato, K., & Funabashi, T. (2005). Next Day Load Curve Forecasting Using Hybrid Correction Method. IEEE Transactions on Power Systems, 20(1), 102-109. doi:10.1109/tpwrs.2004.831256Hsu, Y.-Y., & Yang, C.-C. (1991). Design of artificial neural networks for short-term load forecasting. Part 2: Multilayer feedforward networks for peak load and valley load forecasting. IEE Proceedings C Generation, Transmission and Distribution, 138(5), 414. doi:10.1049/ip-c.1991.0052Rejc, M., & Pantos, M. (2011). Short-Term Transmission-Loss Forecast for the Slovenian Transmission Power System Based on a Fuzzy-Logic Decision Approach. IEEE Transactions on Power Systems, 26(3), 1511-1521. doi:10.1109/tpwrs.2010.2096829Wang, Y., Xia, Q., & Kang, C. (2011). Secondary Forecasting Based on Deviation Analysis for Short-Term Load Forecasting. IEEE Transactions on Power Systems, 26(2), 500-507. doi:10.1109/tpwrs.2010.2052638Kebriaei, H., Araabi, B. N., & Rahimi-Kian, A. (2011). Short-Term Load Forecasting With a New Nonsymmetric Penalty Function. IEEE Transactions on Power Systems, 26(4), 1817-1825. doi:10.1109/tpwrs.2011.2142330Bishop, C. M. (1994). Neural networks and their applications. Review of Scientific Instruments, 65(6), 1803-1832. doi:10.1063/1.1144830Taylor, J. W., & Buizza, R. (2002). Neural network load forecasting with weather ensemble predictions. IEEE Transactions on Power Systems, 17(3), 626-632. doi:10.1109/tpwrs.2002.800906Chu, W.-C., Chen, Y.-P., Xu, Z.-W., & Lee, W.-J. (2011). Multiregion Short-Term Load Forecasting in Consideration of HI and Load/Weather Diversity. IEEE Transactions on Industry Applications, 47(1), 232-237. doi:10.1109/tia.2010.2090440Zhang, W. Y., Hong, W.-C., Dong, Y., Tsai, G., Sung, J.-T., & Fan, G. (2012). Application of SVR with chaotic GASA algorithm in cyclic electric load forecasting. Energy, 45(1), 850-858. doi:10.1016/j.energy.2012.07.006Hong, W.-C. (2011). Electric load forecasting by seasonal recurrent SVR (support vector regression) with chaotic artificial bee colony algorithm. Energy, 36(9), 5568-5578. doi:10.1016/j.energy.2011.07.015Nose-Filho, K., Lotufo, A. D. P., & Minussi, C. R. (2011). Short-Term Multinodal Load Forecasting Using a Modified General Regression Neural Network. IEEE Transactions on Power Delivery, 26(4), 2862-2869. doi:10.1109/tpwrd.2011.2166566Hernández, L., Baladrón, C., Aguiar, J., Carro, B., & Sánchez-Esguevillas, A. (2012). Classification and Clustering of Electricity Demand Patterns in Industrial Parks. Energies, 5(12), 5215-5228. doi:10.3390/en5125215Good, R. P., Kost, D., & Cherry, G. A. (2010). Introducing a Unified PCA Algorithm for Model Size Reduction. IEEE Transactions on Semiconductor Manufacturing, 23(2), 201-209. doi:10.1109/tsm.2010.2041263Hernández, L., Baladrón, C., Aguiar, J. M., Calavia, L., Carro, B., Sánchez-Esguevillas, A., … Gómez, J. (2012). A Study of the Relationship between Weather Variables and Electric Power Demand inside a Smart Grid/Smart World Framework. Sensors, 12(9), 11571-11591. doi:10.3390/s120911571Razavi, S., & Tolson, B. A. (2011). A New Formulation for Feedforward Neural Networks. IEEE Transactions on Neural Networks, 22(10), 1588-1598. doi:10.1109/tnn.2011.2163169http://www.ree.es/sistema_electrico/pdf/indel/Atlas_INDEL_REE.pdfHsu, C.-C., & Chen, C.-Y. (2003). Regional load forecasting in Taiwan––applications of artificial neural networks. Energy Conversion and Management, 44(12), 1941-1949. doi:10.1016/s0196-8904(02)00225-

    Development of Neurofuzzy Architectures for Electricity Price Forecasting

    Get PDF
    In 20th century, many countries have liberalized their electricity market. This power markets liberalization has directed generation companies as well as wholesale buyers to undertake a greater intense risk exposure compared to the old centralized framework. In this framework, electricity price prediction has become crucial for any market player in their decision‐making process as well as strategic planning. In this study, a prototype asymmetric‐based neuro‐fuzzy network (AGFINN) architecture has been implemented for short‐term electricity prices forecasting for ISO New England market. AGFINN framework has been designed through two different defuzzification schemes. Fuzzy clustering has been explored as an initial step for defining the fuzzy rules while an asymmetric Gaussian membership function has been utilized in the fuzzification part of the model. Results related to the minimum and maximum electricity prices for ISO New England, emphasize the superiority of the proposed model over well‐established learning‐based models

    Prediction in Photovoltaic Power by Neural Networks

    Get PDF
    The ability to forecast the power produced by renewable energy plants in the short and middle term is a key issue to allow a high-level penetration of the distributed generation into the grid infrastructure. Forecasting energy production is mandatory for dispatching and distribution issues, at the transmission system operator level, as well as the electrical distributor and power system operator levels. In this paper, we present three techniques based on neural and fuzzy neural networks, namely the radial basis function, the adaptive neuro-fuzzy inference system and the higher-order neuro-fuzzy inference system, which are well suited to predict data sequences stemming from real-world applications. The preliminary results concerning the prediction of the power generated by a large-scale photovoltaic plant in Italy confirm the reliability and accuracy of the proposed approaches
    corecore