2,328 research outputs found

    Deep Learning Based Load Forecasting with Decomposition and Feature Selection Techniques

    Get PDF
    505-517The forecasting of short term electricity load plays a vital role in power system. It is essential for the power system's reliable, secure, and cost-effective functioning. This paper contributes significantly for enhancing the accuracy of short term electricity load forecasting. It presents a hybrid forecasting model called Gated Recurrent Unit with Ensemble Empirical Mode Decomposition and Boruta feature selection (EBGRU). It is a hybrid model that addresses the non-stationary, non-linearity and noisy issues of the time series input by using Ensemble Empirical Mode Decomposition (EEMD). It also addresses overfitting and curse of dimensionality issues of load forecasting by identifying the pertinent features using Boruta wrapper feature selection. It effectively handles the uncertainty and temporal dependency characteristics of load and forecasts the future load using deep learning based Gated Recurrent Unit (GRU). The proposed EBGRU model is experimented by using European and Australian Electricity load datasets. The temperature has high correlation with load demand. In this study, both load and temperature features are considered for the accurate short term load forecasting. The experimental outcome demonstrates that the proposed EBGRU model outperforms other deep learning models such as RNN, LSTM, GRU, RNN with EEMD and Boruta (EBRNN) and LSTM with EEMD and Boruta (EBLSTM)

    Wind Power Forecasting Methods Based on Deep Learning: A Survey

    Get PDF
    Accurate wind power forecasting in wind farm can effectively reduce the enormous impact on grid operation safety when high permeability intermittent power supply is connected to the power grid. Aiming to provide reference strategies for relevant researchers as well as practical applications, this paper attempts to provide the literature investigation and methods analysis of deep learning, enforcement learning and transfer learning in wind speed and wind power forecasting modeling. Usually, wind speed and wind power forecasting around a wind farm requires the calculation of the next moment of the definite state, which is usually achieved based on the state of the atmosphere that encompasses nearby atmospheric pressure, temperature, roughness, and obstacles. As an effective method of high-dimensional feature extraction, deep neural network can theoretically deal with arbitrary nonlinear transformation through proper structural design, such as adding noise to outputs, evolutionary learning used to optimize hidden layer weights, optimize the objective function so as to save information that can improve the output accuracy while filter out the irrelevant or less affected information for forecasting. The establishment of high-precision wind speed and wind power forecasting models is always a challenge due to the randomness, instantaneity and seasonal characteristics
    corecore