43,897 research outputs found

    Short lists for shortest descriptions in short time

    Full text link
    Is it possible to find a shortest description for a binary string? The well-known answer is "no, Kolmogorov complexity is not computable." Faced with this barrier, one might instead seek a short list of candidates which includes a laconic description. Remarkably such approximations exist. This paper presents an efficient algorithm which generates a polynomial-size list containing an optimal description for a given input string. Along the way, we employ expander graphs and randomness dispersers to obtain an Explicit Online Matching Theorem for bipartite graphs and a refinement of Muchnik's Conditional Complexity Theorem. Our main result extends recent work by Bauwens, Mahklin, Vereschchagin, and Zimand

    On approximate decidability of minimal programs

    Full text link
    An index ee in a numbering of partial-recursive functions is called minimal if every lesser index computes a different function from ee. Since the 1960's it has been known that, in any reasonable programming language, no effective procedure determines whether or not a given index is minimal. We investigate whether the task of determining minimal indices can be solved in an approximate sense. Our first question, regarding the set of minimal indices, is whether there exists an algorithm which can correctly label 1 out of kk indices as either minimal or non-minimal. Our second question, regarding the function which computes minimal indices, is whether one can compute a short list of candidate indices which includes a minimal index for a given program. We give some negative results and leave the possibility of positive results as open questions

    Linear list-approximation for short programs (or the power of a few random bits)

    Full text link
    A cc-short program for a string xx is a description of xx of length at most C(x)+cC(x) + c, where C(x)C(x) is the Kolmogorov complexity of xx. We show that there exists a randomized algorithm that constructs a list of nn elements that contains a O(logn)O(\log n)-short program for xx. We also show a polynomial-time randomized construction that achieves the same list size for O(log2n)O(\log^2 n)-short programs. These results beat the lower bounds shown by Bauwens et al. \cite{bmvz:c:shortlist} for deterministic constructions of such lists. We also prove tight lower bounds for the main parameters of our result. The constructions use only O(logn)O(\log n) (O(log2n)O(\log^2 n) for the polynomial-time result) random bits . Thus using only few random bits it is possible to do tasks that cannot be done by any deterministic algorithm regardless of its running time

    Algorithmic statistics: forty years later

    Full text link
    Algorithmic statistics has two different (and almost orthogonal) motivations. From the philosophical point of view, it tries to formalize how the statistics works and why some statistical models are better than others. After this notion of a "good model" is introduced, a natural question arises: it is possible that for some piece of data there is no good model? If yes, how often these bad ("non-stochastic") data appear "in real life"? Another, more technical motivation comes from algorithmic information theory. In this theory a notion of complexity of a finite object (=amount of information in this object) is introduced; it assigns to every object some number, called its algorithmic complexity (or Kolmogorov complexity). Algorithmic statistic provides a more fine-grained classification: for each finite object some curve is defined that characterizes its behavior. It turns out that several different definitions give (approximately) the same curve. In this survey we try to provide an exposition of the main results in the field (including full proofs for the most important ones), as well as some historical comments. We assume that the reader is familiar with the main notions of algorithmic information (Kolmogorov complexity) theory.Comment: Missing proofs adde

    Algorithmic Statistics

    Full text link
    While Kolmogorov complexity is the accepted absolute measure of information content of an individual finite object, a similarly absolute notion is needed for the relation between an individual data sample and an individual model summarizing the information in the data, for example, a finite set (or probability distribution) where the data sample typically came from. The statistical theory based on such relations between individual objects can be called algorithmic statistics, in contrast to classical statistical theory that deals with relations between probabilistic ensembles. We develop the algorithmic theory of statistic, sufficient statistic, and minimal sufficient statistic. This theory is based on two-part codes consisting of the code for the statistic (the model summarizing the regularity, the meaningful information, in the data) and the model-to-data code. In contrast to the situation in probabilistic statistical theory, the algorithmic relation of (minimal) sufficiency is an absolute relation between the individual model and the individual data sample. We distinguish implicit and explicit descriptions of the models. We give characterizations of algorithmic (Kolmogorov) minimal sufficient statistic for all data samples for both description modes--in the explicit mode under some constraints. We also strengthen and elaborate earlier results on the ``Kolmogorov structure function'' and ``absolutely non-stochastic objects''--those rare objects for which the simplest models that summarize their relevant information (minimal sufficient statistics) are at least as complex as the objects themselves. We demonstrate a close relation between the probabilistic notions and the algorithmic ones.Comment: LaTeX, 22 pages, 1 figure, with correction to the published journal versio

    Controlling redundancy in referring expressions

    Get PDF
    Krahmer et al.’s (2003) graph-based framework provides an elegant and flexible approach to the generation of referring expressions. In this paper, we present the first reported study that systematically investigates how to tune the parameters of the graph-based framework on the basis of a corpus of human-generated descriptions. We focus in particular on replicating the redundant nature of human referring expressions, whereby properties not strictly necessary for identifying a referent are nonetheless included in descriptions. We show how statistics derived from the corpus data can be integrated to boost the framework’s performance over a non-stochastic baseline
    corecore