42,033 research outputs found

    Short Quantum Games

    Full text link
    In this thesis we introduce quantum refereed games, which are quantum interactive proof systems with two competing provers. We focus on a restriction of this model that we call "short quantum games" and we prove an upper bound and a lower bound on the expressive power of these games. For the lower bound, we prove that every language having an ordinary quantum interactive proof system also has a short quantum game. An important part of this proof is the establishment of a quantum measurement that reliably distinguishes between quantum states chosen from disjoint convex sets. For the upper bound, we show that certain types of quantum refereed games, including short quantum games, are decidable in deterministic exponential time by supplying a separation oracle for use with the ellipsoid method for convex feasibility.Comment: MSc thesis, 79 pages single-space

    Getting the public involved in Quantum Error Correction

    Full text link
    The Decodoku project seeks to let users get hands-on with cutting-edge quantum research through a set of simple puzzle games. The design of these games is explicitly based on the problem of decoding qudit variants of surface codes. This problem is presented such that it can be tackled by players with no prior knowledge of quantum information theory, or any other high-level physics or mathematics. Methods devised by the players to solve the puzzles can then directly be incorporated into decoding algorithms for quantum computation. In this paper we give a brief overview of the novel decoding methods devised by players, and provide short postmortem for Decodoku v1.0-v4.1.Comment: Extended version of article in the proceedings of the GSGS'17 conference (see https://gsgs.ch/gsgs17/

    Quantum Interactive Proofs with Competing Provers

    Full text link
    This paper studies quantum refereed games, which are quantum interactive proof systems with two competing provers: one that tries to convince the verifier to accept and the other that tries to convince the verifier to reject. We prove that every language having an ordinary quantum interactive proof system also has a quantum refereed game in which the verifier exchanges just one round of messages with each prover. A key part of our proof is the fact that there exists a single quantum measurement that reliably distinguishes between mixed states chosen arbitrarily from disjoint convex sets having large minimal trace distance from one another. We also show how to reduce the probability of error for some classes of quantum refereed games.Comment: 13 pages, to appear in STACS 200

    Quantum coherence, correlated noise and Parrondo games

    Full text link
    We discuss the effect of correlated noise on the robustness of quantum coherent phenomena. First we consider a simple, toy model to illustrate the effect of such correlations on the decoherence process. Then we show how decoherence rates can be suppressed using a Parrondo-like effect. Finally, we report the results of many-body calculations in which an experimentally-measurable quantum coherence phenomenon is significantly enhanced by non-Markovian dynamics arising from the noise source.Comment: 8 page

    Evolutionary quantum game

    Get PDF
    We present the first study of a dynamical quantum game. Each agent has a `memory' of her performance over the previous m timesteps, and her strategy can evolve in time. The game exhibits distinct regimes of optimality. For small m the classical game performs better, while for intermediate m the relative performance depends on whether the source of qubits is `corrupt'. For large m, the quantum players dramatically outperform the classical players by `freezing' the game into high-performing attractors in which evolution ceases.Comment: 4 pages in two-column format. 4 figure

    Quantum interactive proofs with short messages

    Full text link
    This paper considers three variants of quantum interactive proof systems in which short (meaning logarithmic-length) messages are exchanged between the prover and verifier. The first variant is one in which the verifier sends a short message to the prover, and the prover responds with an ordinary, or polynomial-length, message; the second variant is one in which any number of messages can be exchanged, but where the combined length of all the messages is logarithmic; and the third variant is one in which the verifier sends polynomially many random bits to the prover, who responds with a short quantum message. We prove that in all of these cases the short messages can be eliminated without changing the power of the model, so the first variant has the expressive power of QMA and the second and third variants have the expressive power of BQP. These facts are proved through the use of quantum state tomography, along with the finite quantum de Finetti theorem for the first variant.Comment: 15 pages, published versio
    • …
    corecore