555,530 research outputs found

    Mechanical flux weakening for a surface permanent magnet machine with split rotor

    Get PDF
    This paper presents a mechanical flux-weakening solution for Surface Permanent Magnet machines. In particular, a split rotor configuration (two independent rotor sections that can be phase-shifted) is discussed, in which the rotors shifting is achieved through a torque component generated inside the machine, without the need for any external actuation. The analysis demonstrates that the theoretical constant power speed range is infinite. The reliability of the active actuation through the shifting torque promises for a very wide achievable constant power speed range in practice

    Average UV Quasar Spectra in the Context of Eigenvector 1: A Baldwin Effect Governed by Eddington Ratio?

    Full text link
    We present composite UV spectra for low redshift Type 1 AGN binned to exploit the information content of the Eigenvector 1 (E1) parameter space. Composite spectra allow a decomposition of the CIV1549 line profile - one of the strongest high-ionization lines. The simplest CIV decomposition into narrow (NLR), broad (BLR) and very broad (VBLR) components suggests that different components have an analog in Hb with two major exceptions. VBLR emission is seen only in population B (FWHM(Hb)>4000 km/s) sources. A blue shifted/asymmetric BLR component is seen only in pop. A (FWHM(Hb)<4000 km/s) HIL such as CIV. The blueshifted component is thought to arise in a wind or outflow. Our analysis suggests that such a wind can only be produced in pop. A (almost all radio-quiet) sources where the accretion rate is relatively high. Comparison between broad UV lines in radio-loud (RL) and radio-quiet (RQ) sources shows few significant differences. Clear evidence is found for a narrow CIV component in most radio-loud sources. We find also some indirect indications that the black hole (BH) spin, rather than BH mass or accretion rate is a key trigger in determining whether an object will be RL or RQ. We find a ten-fold decrease in EW CIV with Eddington ratio (decreasing from ~1 to \~0.01) while NV shows no change. These trends suggest a luminosity-independent "Baldwin effect" where the physical driver may be the Eddington ratio.Comment: 39 pages, 6 figures. To appear in Ap

    Likelihood Non-Gaussianity in Large-Scale Structure Analyses

    Get PDF
    Standard present day large-scale structure (LSS) analyses make a major assumption in their Bayesian parameter inference --- that the likelihood has a Gaussian form. For summary statistics currently used in LSS, this assumption, even if the underlying density field is Gaussian, cannot be correct in detail. We investigate the impact of this assumption on two recent LSS analyses: the Beutler et al. (2017) power spectrum multipole (PℓP_\ell) analysis and the Sinha et al. (2017) group multiplicity function (ζ\zeta) analysis. Using non-parametric divergence estimators on mock catalogs originally constructed for covariance matrix estimation, we identify significant non-Gaussianity in both the PℓP_\ell and ζ\zeta likelihoods. We then use Gaussian mixture density estimation and Independent Component Analysis on the same mocks to construct likelihood estimates that approximate the true likelihood better than the Gaussian pseudopseudo-likelihood. Using these likelihood estimates, we accurately estimate the true posterior probability distribution of the Beutler et al. (2017) and Sinha et al. (2017) parameters. Likelihood non-Gaussianity shifts the fσ8f\sigma_8 constraint by −0.44σ-0.44\sigma, but otherwise, does not significantly impact the overall parameter constraints of Beutler et al. (2017). For the ζ\zeta analysis, using the pseudo-likelihood significantly underestimates the uncertainties and biases the constraints of Sinha et al. (2017) halo occupation parameters. For log⁥M1\log M_1 and α\alpha, the posteriors are shifted by +0.43σ+0.43\sigma and −0.51σ-0.51\sigma and broadened by 42%42\% and 66%66\%, respectively. The divergence and likelihood estimation methods we present provide a straightforward framework for quantifying the impact of likelihood non-Gaussianity and deriving more accurate parameter constraints.Comment: 33 pages, 7 figure

    Spatial relationship between GPS slip and seismic tremor during Cascadia slow slip events

    Get PDF
    We model GPS deformation and timing of seismic tremor associated with transient deformation in Cascadia to test the hypothesis that tremor and slip occur synchronously but are spatially offset. For the period 2010–2013, we use seismic tremor data with a duration-moment relationship to predict GPS time series and compare them to observations. We find that observed GPS displacements are best predicted when tremor locations on the plate interface are shifted 15 km up-dip of their published epicenter. To test whether the spatial offset of tremor and slip is due to systematic mislocation of published epicenters, we attempt to identify individual sources of tremor using Independent Component Analysis. However, our results are inconclusive. Additionally, our results suggest a moment rate lower than previous studies. We propose that increases in instrumentation have resulted in an increase in recorded tremor giving the appearance of a decrease in moment rate
    • 

    corecore