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Shifted Independent Component Analysis
Morten Mørup, Kristo�er H. Madsen, and Lars K. Hansen

Technical University of DenmarkInformatics and Mathematical ModellingRichard Petersens Plads, Building 321DK-2800 Kgs. Lyngby, Denmark{mm,khm,lkh}@imm.dtu.dk
Abstract. Delayed mixing is a problem of theoretical interest and prac-tical importance, e.g., in speech processing, bio-medical signal analysisand �nancial data modelling. Most previous analyses have been basedon models with integer shifts, i.e., shifts by a number of samples, andhave often been carried out using time-domain representation. Here, weexplore the fact that a shift � in the time domain corresponds to a mul-tiplication of e�i!� in the frequency domain. Using this property analgorithm in the case of sources�sensors allowing arbitrary mixing anddelays is developed. The algorithm is based on the following steps: 1)Find a subspace of shifted sources. 2) Resolve shift and rotation ambigu-ity by information maximization in the complex domain. The algorithmis proven to correctly identify the components of synthetic data. How-ever, the problem is prune to local minima and di�culties arise especiallyin the presence of large delays and high frequency sources. A Matlab im-plementation can be downloaded from [1].

1 Introduction
Factor analysis is widely used to reconstruct latent e�ects from mixtures ofmultiple e�ects based on the model

Xn;m =Xd An;dSd;m +En;m; (1)
where En;m is additive noise. However, this decomposition is not unique sinceeA = AQ and eS = Q�1S yields same approximation as A;S. Consequently, con-straints have been imposed such as Varimax rotation for Principal ComponentAnalysis (PCA) [2], statistical independence of the sources S as in Indepen-dent Component Analysis (ICA)[3, 4]. A related strategy is sparse coding wherethe objective of minimizing the error is combined with a term penalizing thenon-sparsity of S [5].Factor analysis in the setting of ICA is often illustrated by the so-calledcocktail party problem. Here mixtures of several speakers are recorded in severalmicrophones forming the measured signal X. The task is to identify the sources



S of each original speaker. However, even in an anechoic environment the mixingmodel is typically not accurate because of di�erent delays in the microphones.Consider two microphones placed at distance L and L+h from a given speaker.Under normal atmospheric conditions, the speed of sound is approximately c =344 m/s while a typical sampling rate is fs = 22 kHz. Then the delay in samplesbetween the two microphones is given by: #samples= fshc such that the delayincreases linearly with the di�erence in distance. Consequently, a distance of1 cm gives a delay of 0.6395 samples while h = 1m leads to a delay of 63.95samples. Harshman and Hong [6] proposed a generalization of the factor modelsin which the underlying sources have speci�c delays when they reach the sensors.The model is called shifted factor analysis (SFA), and reads
Xn;m =Xd An;dSd;m�e�n;d +En;m: (2)

In real acoustic environments we expect echoes due to paths that are createdby re�ection o� surfaces. To account for general delay mixing e�ects, the ICAmodel has been generalized to convolutive mixtures, see e.g., [7�9]
Xn;m =X�;d A�n;dSd;m�� +En;m: (3)

Here A� is a �lter that accounts for the presence of each source in the sensors attime delay � . The shifted factor model, thus is a special case of the convolutivemodel where the �lter coe�cients A�n;d = An;d if e�n;d = � else A�n;d = 0.In fact shifted mixtures are also seen in many other contexts. For instance,astronomy where star motion Doppler e�ects induce frequency red shifts thatcan be modelled using SFA. Here we will focus on the delayed source model.In [6] strong support was found for the conjecture that the incorporation ofshifts can strengthen the model enough to make the parameters identi�able upto scaling and permutation (essential uniqueness). We will demonstrate that thisconjecture is not correct when allowing for arbitrary shifts. Indeed, the modelis, as for regular factor analysis, ambiguous. In [10] an algorithm was proposedto estimate the model. However, the algorithm has the following drawbacks.
1. All potential shifts have to be speci�ed in the model.2. Exhaustive integer search for the delays is expensive.3. The model only accounts for shifts by whole samples.4. The model is in general not unique.
Prior to the work of [6, 10] Bell and Sejnowski [4] sketched how to handletime delays in networks based on a model similar to equation 2. This was fur-ther explored in [11]. Although their algorithms derive gradients to search forthe delays (alleviating the �rst two drawbacks above) the models are still basedon pure integer delays. In [12] a di�erent model based on equally mixed sources,i.e. A = 1, formed by moving averages incorporated non-integer delays by sig-nal interpolation. Yeredor [13] solved the SFA model by joint diagonalization of



Fig. 1. Example of activities obtained (black graph) when summing three components(gray, blue dashed and red dash-dotted graphs) each shifted to various degrees (given insamples by the colored numbers). Clearly, the resulting activities are heavily impactedby the shifts such that a regular instantaneous ICA analysis would be inadequate.
the source cross spectra based on the AC-DC algorithm with non-integer shiftsfor the 2 � 2 system. This approach was extended to complex signals in [14].The algorithm is least squares optimal for equal number of sensors and sources.More sensors than sources is not a problem for conventional ICA; we simplyreduce dimension by variance decomposition, this procedure is exact for noise-less mixing. Due to the delays projection based dimensional reduction will notreproduce the simple single delay structure, but rather lead to a more generalconvolutive mixture. We will therefore aim at an algorithm for �nding a shiftinvariant subspace. Hence, solve equation 2 by use of the fact that a shift � inthe time domain can be approximated by multiplication by the complex coe�-cients e�i!� in the frequency domain. This alleviates the �rst three drawbacksof the SFA algorithm. We will denote this algorithm a Shift Invariant SubspaceAnalysis (SISA). To further deal with shift and rotation ambiguities, we imposeindependence in the complex domain based on information-maximization (IM)[4]. Hence, we form an algorithm for ICA with shifted sources (SICA). Notice,that algorithms for ICA in the complex domain without shifts have previouslybeen derived, see for instance [9, 15] and references therein.
2 Method and Results
In the following U will denote a matrix in the time domain, while eU denotes thecorresponding matrix in the frequency domain. U and eU denotes 3-way arraysin the time and frequency domains respectively. Furthermore, U � V denotesthe direct product, i.e. element-wise multiplication. Also, ! = 2� f�1M such thateU(f) = U � e�i2� f�1M � . Finally, the ith row of a matrix will be denoted Ui;:.
2.1 Shift Invariant Subspace Analysis (SISA)In the following we will device an algorithm to �nd a shift invariant subspacebased on the SFA model. Consider the SFA model and its frequency transformed
Xn;m =Xd An;dSd;m��n;d +En;m; eXn;f =Xd An;deSd;fe�i2� f�1M �n;d + eEn;f :

(4)



In matrix notation this can be stated aseXf = eA(f)eSf + eEf : (5)
Due to Parseval's identity the following holds

Cls =Xn;m kEn;mk2F = 1M Xn;f keEn;fk2F : (6)
Thus, minimizing the least square error in the time and frequency domain isequivalent. The algorithm will be based on alternatingly solving for A, S and � .
S update: According to equation 5, Sf can be estimated as

eSf = eA(f)y eXf : (7)
Although, S is updated in the frequency domain the updated version has toremain real when taking the inverse FFT. For S to be real valued the followinghas to hold eSM�f+1 = eS�f ; (8)where � denotes complex conjugate. This constraint is enforced by updatingthe �rst bM=2c+ 1 elements, i.e. up to the Nyquist frequency, while setting theremaining elements according to equation 8.
A update: Let eS(n)d;f denote the delayed version of the source signal eSd;f to the
nth channel, i.e. eS(n)d;f = eSd;fe�i2� f�1M �n;d . Then equation 2 can be restated as

Xn;: = An;:S(n) +En;:; (9)
This is the regular factor analysis problem giving the update

An;: = Xn;:S(n)y : (10)
� update: The least square error for the model stated in equation 5, is givenby

Cls = 1M Xf (eXf � eA(f)eSf )H(eXf � eA(f)eSf ); (11)
where H denotes the conjugate transpose. De�ne TND�1 = vec(� ), i.e. thevectorized version of the matrix � such that Tn+(d�1)N = �n;d. Let further

eQn;d;f = eA(f)n;deSd;f ; eEf = eXf � eA(f)eSf : (12)
Then the gradient of Cls with respect to �n;d is given as

gn+(d�1)N = @Cls@Tn+(d�1)N = @Cls@�n;d = �1M Xf 2!=[ eQn;d;f eE�n;f ] (13)



The Hessian has the following structure
Hn+(d�1)N;n0+(d0�1)N = ( �2M Pf !2<[ eQn;d;f eQ�n0;d0;f ] if n 6= n0 ^ d 6= d0

�2M Pf !2<[ eQn;d;f ( eQ�n0;d0;f + eE�n0;f )] if n = n0 ^ d = d0(14)As a result, � can be estimated using the Newton-Raphson methodT T� �H�1g; (15)where � is a step size parameter that is tuned to keep decreasing the cost function.

Fig. 2. Results obtained by a shift invariant subspace analysis (SISA). Left panel: thetrue factors forming a synthetic data set. To the left, the strength of the mixing A ofeach source is indicated in gray color scale. In the middle, the three sources are shownand to the right is given the time delays of each source to each channel. Right panel:The estimated factors from the SISA analysis. Although, all the variance is explainedthe decomposition has not identi�ed the true underlying components but an ambiguousmix. Clearly, as for regular factor analysis the SISA is not unique.

2.2 SISA is not uniqueAccording to equation 5, the reconstructed signal in the complex domain is givenas eXf � eA(f)eSf = eA(f)fW(f)fW(f)�1eSf :Such that fW(f) = W � e�i2� f�1M �̂ is arotation, scaling and shift matrix. Assume the inverse of fW(f) is also a rotation,scaling and shift matrix, i.e. fW(f)�1 = V � e�i2� f�1M �� . Since fW(f)fW(f)�1 = I,we �nd X
d00 Wd;d00Vd0;d00e�i2� f�1M (�̂d;d00+��d0;d00 ) = �0 for d 6= d08 f1 for d = d08 f

(16)



From f = 1 we obtain the relation V = W�1. For the remaining frequenciesthis expression can only be valid if �̂ dd00 + �� d00d = 0 (diagonal elements) and
�̂ dd00 + �� d00d0 = kdd0 (o� diagonal elements) where kdd0 denotes an arbitraryconstant. The �rst relation gives the constraint that �̂ = ���T . The secondrelation further constraints all the elements of the columns of �̂ to be equal.Thus the ambiguity is given by fW(f) = [W diag(e�i2� f�1M b� )]. Where b� is avector describing the shift ambiguity.
2.3 Shifted Independent Component Analysis (SICA)

A common approach to ICA is the maximum likelihood (ML) method [16] whichcorresponds to the approach of maximizing information proposed in [4]. In theframework of ML a non-gaussian distribution on the sources is assumed such thatambiguity can be resolved up to the trivial ambiguities of scale, permutation andsource shifting relative to the time delays.De�ne, eUf = fW(f)eSf , i.e. the sources at frequency f when transformedaccording to the rotation and shift ambiguity described in the previous section.The ambiguity can be resolved by maximizing the log-likelihood assuming the(non-gaussian) Laplace distribution p(eUf ) / e�j
eUd;f j, i.e.

p(eSf jW; b� ) =Yf p(eSf jW; b� ) =Yf jdet(fW(f))jp(fW(f)eSf ) (17)
Such that the log-likelihood as a function of W and b� becomes

L(W; b� ) =Xf ln jdet(fW(f))j �Xd jfW(f)eSf jd (18)
By maximizing L(W; b� )W and b� is estimated and a new unambiguous S solu-tion found by eSf = fW(f)eSf . The corresponding mixing and delays can be esti-mated alternating between the A and � update. We initialized A as A = AW�1and � i;d by the maximum cross-correlation between Xi;: and Sd;:.
3 Discussion
Traditionally, ICA analysis is based on subspace analysis often using singularvalue decomposition (SVD). The sources are then found by rotating the vectorsspanning the subspace according to a measure of independence. Similarly, wederived the SISA algorithm to �nd a shift invariant subspace by alternating leastsquares. Shift and rotation ambiguities were solved by imposing independenceon the amplitudes of the frequency transform of the sources. While SVD has aclosed form solution the SISA algorithm is non-convex. EstimatingA and S has aclosed form solution for �xed values of � , S andA. However, � is estimated usingan iterative method potentially leading to many local minima. Furthermore, theproblem becomes increasingly di�cult for high frequency sources and large shifts



Fig. 3. Result obtained using the SICA on the decomposition found using SISA. Byimposing independence, e.g., requiring the amplitudes in the frequency domain to besparse, the rotation and shift ambiguity inherited in the model is resolved. Clearlythe true underlying components and their respective mixing are correctly identi�ed.However, a local minimum has been found, resulting in errors in the estimation of thedelays for the �rst component.
due to additional local minima. In an example we saw this happen: The SICAalgorithm failed in correctly identifying the delays of the �rst component; thecomponent with the highest frequencies. A multistart strategy was invoked, wechoose the best of ten random initializations to obtain a good initial solution forthe estimation of the shift invariant subspace. While our algorithm was basedon likelihood maximization, Yeredor [13] developed an algorithm based on jointdiagonalization. The present SISA is potentially useful as a preprocessing stepfor this latter algorithm when estimating less sources than sensors. Current workcomprises performance comparisons with this algorithm (A. Yeredor, personalcommunication).Previous work based on integer shifts conjectured the decomposition to beunique [6]. When using integer shifts some shifts might perform better than oth-ers due to a better integer rounding error. Hence, this might be why the integershifts formed seemingly unique solutions. However, as demonstrated in �gure2 the shifted factor analysis model is not in general unique. But, by imposingindependence unique solutions can be obtained up to trivial permutation, scal-ing and speci�c onset relative to the delays of the sources as demonstrated in�gure 3. The shift/delay model may prove useful for a wide range of data whereICA already has been employed. Furthermore, the extra information of delayscan be useful for spatial source localization when combined with informationof position of the sensors. Future work will focus on implementing additionalconstraints such as non-negativity and attempt to improve the identi�ability inthe presence of many local minima. The current algorithm can be downloadedfrom [1].
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