9,299 research outputs found

    Shell side numerical analysis of a shell and tube heat exchanger considering the effects of baffle inclination angle on fluid flow using CFD

    Get PDF
    In this present study, attempts were made to investigate the impacts of various baffle inclination angles on fluid flow and the heat transfer characteristics of a shell-and-tube heat exchanger for three different baffle inclination angles namely 0°,10° and 20°. The simulation results for various shell and tube heat exchangers, one with segmental baffles perpendicular to fluid flow and two with segmental baffles inclined to the direction of fluid flow are compared for their performance. The shell side design has been investigated numerically by modeling a small shell-and-tube heat exchanger. The study is concerned with a single shell and single side pass parallel flow heat exchanger. The flow and temperature fields inside the shell are studied using non-commercial CFD software tool ANSYS CFX 12.1. For a given baffle cut of 36 %, the heat exchanger performance is investigated by varying mass flow rate and baffle inclination angle. From the CFD simulation results, the shell side outlet temperature, pressure drop, recirculation near the baffles, optimal mass flow rate and the optimum baffle inclination angle for the given heat exchanger geometry are determined

    An experimental and computational study of the vortex shape in a partially baffled agitated vessel

    Get PDF
    The vortex shape in a non-standard partially baffled agitated vessel in the form of a glass-lined, under-baffled stirred vessel has been investigated using both experimental and numerical approaches for an air/water system for different rotation speeds of the agitator. A simple and flexible experimental strategy was developed for determination of the time-averaged location of the unstable free surface using a process involving superimposition of images. CFD simulations were made to predict the vortex shape by using an Eulerian–Eulerian multiphase model coupled with a homogenous turbulence model. The simplifying assumptions of a constant bubble size, a constant drag coefficient and use of the k–ε turbulence model were made. An assessment of the capability of the numerical method to predict the vortex shape was carried out through comparison between experimental data and numerical results. Considering for comparison purposes a water isosurface volume fraction equal to 0.9, to account for the existence of air/water mixture present at the interface in the experiments, instead of the classical value of 0.5, gave very good agreement with the experimental data

    Hydrogen hollow cathode ion source

    Get PDF
    A source of hydrogen ions is disclosed and includes a chamber having at one end a cathode which provides electrons and through which hydrogen gas flows into the chamber. Screen and accelerator grids are provided at the other end of the chamber. A baffle plate is disposed between the cathode and the grids and a cylindrical baffle is disposed coaxially with the cathode at the one end of the chamber. The cylindrical baffle is of greater diameter than the baffle plate to provide discharge impedance and also to protect the cathode from ion flux. An anode electrode draws the electrons away from the cathode. The hollow cathode includes a tubular insert of tungsten impregnated with a low work function material to provide ample electrons. A heater is provided around the hollow cathode to initiate electron emission from the low work function material

    Improved prediction of shell side heat transfer in horizontal evaporative shell and tube heat exchangers

    Get PDF
    This paper presents an improved prediction method for the heat transfer and pressure drop in the shell side of a horizontal shell and tube evaporator. The results from an experimental test program are used in which a wide range of evaporating two-phase shell side flow data was collected from a TEMA E-shell evaporator. The data are compared with shell side heat transfer coefficient and pressure drop models for homogeneous and stratified flow. The comparison suggests a deterioration in the heat transfer data at low mass fluxes consistent with a transition from homogeneous to stratified flow. The pressure drop data suggest a stratified flow across the full test range. A new model is presented that suggests the transition in the heat transfer data may be due to the extent of tube wetting in the upper tube bundle. The new model, which also takes into account the orientation of the shell side baffles, provides a vast improvement on the predictions of a homogenous type model. The new model would enable designers of shell side evaporators/reboilers to avoid operating conditions where poor heat transfer could be expected, and it would also enable changes in process conditions to be assessed for their implications on likely heat transfer performance. (Abstract from WOK

    Multistability and memory effect in a highly turbulent flow: experimental evidence for a global bifurcation

    Get PDF
    We report an experimental evidence of a global bifurcation on a highly turbulent von Karman flow. The mean flow presents multiple solutions: the canonical symmetric solution becomes marginally unstable towards a flow which breaks the basic symmetry of the driving apparatus even at very large Reynolds number. The global bifurcation between these states is highly subcritical and the system thus keeps a memory of its history. The transition recalls low-dimension dynamical systems transitions and exhibits a very peculiar statistics. We discuss the role of turbulence in two ways: the multiplicity of hydrodynamical solutions and the effect of fluctuations on the nature of transitions.Comment: submitted to Physical Review Letters 19 May 2004, accepted 10 September 200

    Dynamic stability and parametric resonance in cylindrical propellant tanks Final report

    Get PDF
    Dynamic stability and parametric resonance of longitudinally excited liquid propellant tank mode

    Single and multiphase CFD approaches for modelling partially baffled stirred vessels: comparison of experimental data with numerical predictions

    Get PDF
    Whilst the use of CFD to study mixing vessels is now common-place, there are still many specialised applications that are yet to be addressed. Here we present CFD and PIV results for a hydrodynamic study of a partially baffled vessel with a free surface. The standard k.ε and SSG Reynolds Stress turbulence models are used and the numerical predictions of the mean flow field are compared with experimental data for single phase modelling. At low rotation rates a flat free surface is observed and the flow is simulated using a single phase model, whilst at high rotation rates an Eulerian–Eulerian multiphase model is used to capture the free surface location, even under conditions when gas is drawn down to the impeller. It is shown that there are significant transient effects that mean many of the “rules of thumb” that have been developed for fully baffled vessels must be revisited. In particular such flows have central vortices that are unsteady and complex, transient flow-induced vortical structures generated by the impeller–baffle interactions and require a significant number of simulated agitator rotations before meaningful statistical analysis can be performed. Surprisingly, better agreement between CFD and experimental data was obtained using the k.ε than the SSG Reynolds stress model. The multiphase inhomogeneous approach used here with simplified physics assumptions gives good agreement for power consumption, and with PIV measurements with flat and deformed free surfaces, making this affordable method practical to avoid the erroneous modelling assumption of a flat free surface often made in such cases
    corecore