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Multistability and memory effect in a highly turbulent flow: Experimental evidence

for a global bifurcation

Florent Ravelet, Louis Marié, Arnaud Chiffaudel,∗ and François Daviaud
Service de Physique de l’État Condensé, DSM, CEA Saclay, CNRS URA 2464, 91191 Gif-sur-Yvette, France

(Submitted to Phys. Rev. Lett. 19 May 2004)

We report an experimental evidence of a global bifurcation on a highly turbulent von Kármán flow.
The mean flow presents multiple solutions: the canonical symmetric solution becomes marginally
unstable towards a flow which breaks the basic symmetry of the driving apparatus even at very
large Reynolds number. The global bifurcation between these states is highly subcritical and the
system thus keeps a memory of its history. The transition recalls low-dimension dynamical systems
transitions and exhibits a very peculiar statistics. We discuss the role of turbulence in two ways: the
multiplicity of hydrodynamical solutions and the effect of fluctuations on the nature of transitions.

PACS numbers: 05.45.-a, 47.20.-k, 47.27.Sd

Non-linear systems generally present multiple solutions
and various transitions between them. Moreover, stabil-
ity and transitions are influenced by the presence of noise
and/or fluctuations. In the field of turbulence, the ques-
tion of multistability of turbulent flows, for example in
tornadoes [1, 2], delta wing flow [3], wakes [4], and vortex
breakdown [5], remains open and unsolved. While mul-
tiple analytical or numerical solutions are often encoun-
tered for the Navier-Stokes equation at even moderate
Reynolds number (e.g., for swirling flows [2, 5, 6, 7, 8]),
these solutions are generally neither experimentally rel-
evant, nor stable at very high Reynolds number. Fur-
thermore, turbulent flows at very high Reynolds number
are generally expected to statistically respect the basic
symmetries of their driving apparatus. Indeed, even if
bifurcations and symmetry breaks occur on the way to
turbulence, the fully developed turbulent state is known
to restore the broken symmetries, in the limit of infi-
nite Reynolds number and far from boundaries [9]. In
this Letter, we experimentally study the multistability
of a turbulent von Kármán flow between two counter-
rotating disks in a finite vessel at very high Reynolds
number. This system undergoes a subcritical global bi-
furcation between turbulent states characterized by mean
flows of different topology and symmetry. These turbu-
lent states coexist at high Reynolds number and can be
“prepared” specifically, i.e., they keep a memory of the
system history. Since these states are highly fluctuat-
ing turbulent states, we also address the question of the
role of the fluctuations for such a transition. Actually,
the effect of an external noise on an existing transition is
well documented [10], but the global bifurcation reported
here does only take place over an already fluctuating tur-
bulent regime. Do fluctuations trigger the bifurcation as
multiplicative noise do for nonlinear oscillators [11] and
turbulent α-effect do for dynamo action [12] ?

Experimental setup. We call von Kármán type flow
the flow generated between two coaxial counter-rotating
impellers in a cylindrical vessel. The cylinder radius and
height are respectively R = 100 mm and Hc = 500 mm.

We use bladed disks to ensure inertial stirring. Most of
the inertially driven von Kármán setups studied in the
past dealt with straight blades [13, 14]. In this Letter,
the impellers consist of 185 mm diameter disks each fitted
with 16 curved blades —curvature radius 50 mm, height
20 mm (Fig. 1). The distance between the inner faces of
the disks is H = 180 mm which defines a working space
for the flow of aspect ratio H/R = 1.8. With curved
blades, the directions of rotation are no longer equivalent.
We rotate the impellers clockwise (with the concave face
of the blades). Four baffles (10 × 10 × 125 mm) can be
added along the cylinder wall.

The impellers are driven by two independent brush-
less 1.8 kW motors, with a speed servo loop control. The
motor rotation frequencies f1, f2 can be varied indepen-
dently in the range 0−15 Hz. An experiment is thus char-
acterized by two numbers: f =

√

(f2

1
+ f2

2
)/2 measuring

the intensity of the forcing and θ = (f2 − f1)/(f1 + f2)
measuring the speed dissymmetry (−1 ≤ θ ≤ 1). For ex-
act counter rotation f1 = f2 = f and θ = 0. The speed
servo loop control ensures a precision of 0.5% on f , and
an absolute precision of ±0.002 on θ for small values.

The working fluid is water. Copper cooling coils be-
hind the impellers and a thermoregulated bath ensure
a thermal regulation with a precision of 1oC. Velocity
fields are measured by Laser Doppler Velocimetry (LDV).
Torques are measured as an image of the current con-
sumption in the motors given by the servo drives and
have been calibrated by calorimetry. The analog signal
is low-pass filtered at 10 Hz. For a typical frequency
f = 4 Hz at 35oC, the integral Reynolds number is
Re = 2πfR2ν−1 ≃ 3. 105 and the velocity fluctuation

f1

1

f2

2
R

H

FIG. 1: Sketch of the experimental setup and of the impellers
blades profile. The arrow indicates the positive rotation sense.
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level is of order 30%: the flow is highly turbulent.
The von Kármán flow phenomenology is the follow-

ing. Each impeller acts as a centrifugal pump: the fluid
rotates with the impeller and is expelled radially. It
is pumped in the center of the impeller. In the exact
counter-rotating regime, the flow is divided into two toric
cells separated by an azimuthal shear layer. The problem
(equation and boundary conditions) is invariant under ro-
tations of π (Rπ) around any radial axis passing through
the center of the cylinder. The velocity field is expected
Rπ-invariant.

A “statistical” symmetry breaking. In our high
Reynolds number regime, the flow is highly turbulent.
For instance the rms value of the velocity is of the same
order of magnitude as the mean value. In Fig. 2 (left),
we present a map of the mean part of the exact counter-
rotation flow measured by LDV. Two cells are observed,
the flow is Rπ-invariant: the symmetries are statistically
restored [9]. The mean angular momentum of the fluid is
equal to zero: the two impellers produce the same mean
torque to maintain the flow. This situation is well-known
and documented. We label this symmetric state (s).

However, with our curved blades, we observe for small
θ a global bifurcation of the flow after a certain time tbif :
both mean velocity field and torques display dramatic
changes (Fig. 3). The two torques are suddenly 4 times
larger, and are no longer equal. The mean flow exhibits
only one cell (Fig. 2, right). In the bulk, the fluid is
pumped toward impeller 1 without rotation. Then the
fluid is expelled radially and starts spiraling along the
cylinder until it meets impeller 2 which rotates in the
opposite direction. It is abruptly stopped and reinjected
near the axis. We label this state (b1). A third state (b2)
is deduced from (b1) by exchanging the roles of impellers
1 and 2. In bifurcated states (b1) or (b2), the fluid is
globally in rotation: the mean angular momentum is not
zero.

Finally, three states are observed: the canonical Rπ-
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FIG. 2: Dimensionless mean velocity field measured at θ = 0
by LDV over 120 integral turn-over time by grid point to
ensure good convergence; f = 2 Hz (Re = 1.5 105). Left:
symmetric state (s). Right: bifurcated state (b1). Space co-
ordinates in units of R. Gray code stands for azimuthal ve-
locity. Isolines are distant of 0.2 and the gray code saturates
in the right map. Bold lines indicate level zero.

invariant—in a statistical sense—state (s) and two bifur-
cated states which break the Rπ symmetry at θ = 0, but
are images one of the other by Rπ. We detail in the next
section the transitions between these different states.

Hysteresis loops. The difference between the two
torques characterizes the different states. We have
checked that, as expected for so high a Reynolds num-
ber [9], the torque T given by one impeller for a given
(f, θ) does not depend on Re and scales as: T (f, θ) =
Kp(θ) ρR5 (2πf)2 [14], with ρ the fluid density and Kp

a dimensionless power coefficient.

In Fig. 4, we plot the dimensionless difference ∆Kp

between the two torques vs. θ for several configurations.
For straight blades, we observe a continuous curve from
θ = −1 to θ = 1 (Fig. 4a) with two transitions between
one- and two-cells flows at θ = ±0.13. For impellers with
curved blades and no baffles on the cylinder wall, we ob-
serve the three states in Fig. 4b. For θ = 0, we recognize
state (s) (∆Kp = 0), and both bifurcated states (b1) and
(b2). State (s) branch is almost reduced to one point and
can only be reached by starting the two motors simul-
taneously. Its stability is discussed in the next section.
The bifurcated state (b1) lies on a branch coming contin-
uously from θ = −1 (f2 = 0). Starting from θ = −1 and
increasing θ, we stay on the (b1) branch even for θ > 0:
impeller 1 keeps rotating and pumping the fluid although
its rotation rate is weaker than impeller 2 rotation rate.
For θ ≃ 0.16 there is a transition from (b1) to (b2): the
fluid abruptly changes its sense of rotation. There is a
large hysteretic cycle. Note that it is impossible to reach
the symmetric state (s) by this way. The global quanti-
ties of this highly turbulent flow keep memory of the way
the system has been started from rest. An intermedi-
ate situation is reached with the same curved blades and
baffles on the wall (Fig. 4c). Baffles break the spiraling
flow along the wall of the cylinder, which is a major fea-
ture of the bifurcated state velocity field. The hysteretic
cycle splits into two classical first order cycles: the cen-
tral symmetric state becomes stable and can be obtained
from any initial condition.

Stability of the central branch (s). We focus now on
the transition from symmetric state to bifurcated state
for curved blades without baffles. As mentioned before,
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FIG. 3: Time serie of dimensionless torque showing the bifur-
cation (s) → (b2), for θ = 0.0204, f = 4.08 Hz. Left: torque
on impeller 1. Right: torque on impeller 2. The bifurcation
time is the time when the torque on impeller 1 reaches 140%
of the mean value for the symmetric state (s).
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the central branch is very small and, for a given (f, θ),
the transition occurs after a certain time tbif which ex-
hibits a complex statistics.

So we performed the following experiments: starting
from rest, we simultaneously start both motors to a given
(f, θ) with a short ramp (typically 1 s) and record the
torques. Few seconds after the instant tbif when bifur-
cation occurs, we stop the motors, wait a minute and
run again. We perform typically 500 runs to get the
distribution of bifurcation times. The cumulative dis-
tribution function (CDF) for tbif (Fig. 5) shows ex-
ponential behavior for the probability of staying in the
symmetric state a time greater than t: P (tbif > t) =
A exp[−(t − t0)/τ ], t0 is characteristic of the transition
duration (t0.f ∼ 5). Thus, we obtain a characteristic bi-
furcation time τ(f, θ) by non-linear fitting of the CDF.
We performed the experiment for three values of f . The
results are shown in Fig. 6 in log-log scale. There is no
noticeable dependence on f and τ behaves as | θ |−6.
So, as θ tends to zero, τ diverges very fast to infinity:
the central point is marginally stable. The physical phe-
nomenon at the origin of such an exponent remains to be
understood.
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FIG. 4: Dimensionless torque difference ∆Kp vs. θ for Re

in the range 2 − 8 × 105. Straight blades (a) exhibit con-
tinuous transition from 1-cell flow to 2-cells flow for θ =
±0.13 (vertical lines). Curved blades without (b) or with
(c) baffles along cylinder wall show subcritical transitions be-
tween symmetric/2-cells (s)-(�) and bifurcated/1-cell (b1)-
(b2) states (©).
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FIG. 5: Cumulative density function of bifurcation times for
three different θ at f = 4.16 Hz. Dotted line: non-linear
exponential fit.

Discussion. The experiment presented here opens
mainly two problems: (i) the existence and the nature
of multiple regimes for this turbulent flow, and (ii) the
role of the noise or the fluctuations in some transitions
between these flow regimes, i.e., the stability problem for
the two-cell (s) branch.

We first try to explain the existence of multiple stable
regimes by hydrodynamical basic arguments. The von
Kármán (VK) class of Navier-Stokes solutions in semi-
infinite space with one or two infinite rotating disks for
end-conditions has been extensively studied since 1921
[6, 7, 15]. Experiments are necessarily limited in diame-
ter and do not strictly belong to the same class. However
the approximation is very commonly made at least for
small H/R. In practice, in our system, and in the spirit
of Batchelor [6] and Stewartson [7], we construct finite-
aspect-ratio solutions of our experimental VK problem at
high Re (Fig. 2) with (i) any typical truncated Batchelor
[6] solution for 0 ≤ r . R/2 together with (ii) some recir-
culation flow in rotation in R/2 . r . R and (iii) a thin
boundary layer near the outer cylinder which matches
this rotation [16]. The two-cell mean flow (s) is sim-
ply described in the laboratory frame by two rotating
regions inertially driven by the blades and separated by
a shear layer near mid-height. Both disks centrifugally
expel the fluid. Let’s now consider one-cell flows (b1) and
(b2). Since one disk expels the fluid and the other rein-
jects it to the center, these flows resemble the corotating
(f1.f2 < 0) regime solutions [6, 7] characterized by: uni-
form rotation of the bulk; a boundary layer on each disk;
pumping from one disk to the other and recirculation
at infinity. This solution has no shear layer. Let’s note
that mean bulk rotation —for r . R/2— is close to zero
(Fig. 2, right). In conclusion, we can make the assump-
tion that flows (b1) and (b2) are equivalent to corotating
flows observed in two oppositely rotating frames of fre-
quencies +fr and −fr with |fr| > max(|f1|, |f2|). This
is well consistent with the fact that the single cell flows
(b1) and (b2) exhibit global rotation in the outer shell
R/2 . r . R. The stability of such solution is clearly
enhanced by the concave curved blades that enforce ro-
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FIG. 6: τ.f vs. θ for f = 4.16 Hz/Re = 3.3 105 (©), f = 6
Hz/Re = 4.7 105 (�) and f = 10 Hz/Re = 7.9 105 (♦), fitted
by a −6 slope power law.
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tation of the fluid near the outer cylinder.
Let’s now consider how these three solution branches

exchange their stability. First note that the bifurcation
diagrams respect the Rπ symmetry: θ → −θ; ∆Kp →
−∆Kp. The straight blades diagram (Fig. 4a) is con-
tinuous: from left to right two second order transitions
(b1)↔(s) and (s)↔(b2) are observed as in small H/R
systems [17]. On the contrary, the curved blades dia-
gram (Fig. 4b) is strongly hysteretic. Addition of baffles
(Fig. 4c) allows to remove a degeneracy: baffles drag dis-
turb the outer cylinder boundary layer flow, thus lower-
ing the relative stability of one-cell flows with respect to
the two-cell flow. The large hysteresis cycle is split into
two classical first-order bifurcations. This singular cycle
can thus be viewed as the result of the collapse or collision
of two first-order cycles. Similar cycles are encountered
in conical [18] and delta-wing flows [3]. The memory ef-
fect —if the system is currently on (s), both driving fre-
quencies must have been increased in parallel— is thus
essentially a consequence of the cycle structure.

In order to test the effect of turbulence on the stabil-
ity of the observed flows, we lowered Reynolds number
down to laminar using water/glycerol mixtures. While
Re . 1000, no multiplicity is observed: the bifurca-
tion diagram is similar to the straight-blade diagram of
Fig. 4a. The cycle appears for Re between 1000 and 3000.
The study is in progress and will be reported elsewhere.
The high Reynolds behavior reported in this Letter is well
established once Re & 5000. Thus, multiplicity appears
with turbulence and does not with laminar (Re . 110)
nor chaotic (Re . 1000) flows. A possible explanation
for the multiplicity could thus be the evolution of the
outer cylinder boundary layer with Re.

Besides, the statistical nature of the transitions them-
selves is probably related to turbulent fluctuations. Let’s
first notice that the bifurcation studied here corresponds
to exchange of stability between mean flows, these mean
states being never realized at any given time. Is the bi-
furcation formalism exactly valid for our mean flows ?
On some aspects, our system behaves as a low-dimension
dynamical system, as in the turbulent spiral transition
observed in wide-aspect-ratio Taylor-Couette flow [19] or
in the noise-induced Hopf bifurcation for a Duffing os-
cillator with multiplicative white noise [11]. However,
suppose a non-linear amplitude equation could correctly
describe the shape bifurcation diagram, it would proba-
bly not be able to catch the statistics of the transition
from the two-cell state (s) to a one-cell state (b1) or (b2).
This transition shows a very peculiar statistics, with a
very high critical exponent 6 (Fig. 6). It also strictly
respects a forbidden-transition rule: the horizontal axis
of the bifurcation diagram is never crossed, i.e., (s)→(b2)
[resp. (s)→(b1)] is forbidden for θ < 0 [resp. θ > 0]. This
observational fact could by itself justify the stability of
the central point θ = 0, which has to respect both rules.
Furthermore, the non-crossing of the axis could be the

signature of multiplicative noise as suggested to account
for small-scale turbulence [20].

The global bifurcation reported in this Letter presents
a very unusual bifurcation diagram. Some features about
the multistability have been searched among the mechan-
ics of high-Reynolds-number flows, while some other sim-
ply involve the theory of non-linear bifurcations, possi-
bly in the presence of noise. Among the transitions, the
two-cell → one-cell stability exchange plays a remarkable
role, in presenting an original statistics of transition and
putting the flow definitively in a state which breaks the
Rπ symmetry of the system and does not allow the flow
to restore statistically this symmetry when Re → ∞.

We thank V. Padilla and C. Gasquet for efficient as-
sistance in building and piloting the experiment, and
B. Dubrulle, O. Dauchot and N. Leprovost for fruitful
discussions.
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University Paris 7, (2003)] that, when using inertial stir-
ring bladed disks at high Reynolds number, the flat outer
rotating cylinder may be rotated almost without any ef-
fect but developing a thin viscous boundary layer on it.
The torque exerted through this layer can generally be
neglected with respect to the impeller torques.

[17] G. Dijkstra & G.J.F. van Heijst, J. Fluid Mech. 128, 123
(1983).

[18] V. Shtern & F. Hussain, J. Fluid Mech. 309, 1 (1996).
[19] A. Prigent et al., Phys. Rev. Lett. 89, 014501 (2002).
[20] J.-P. Laval, B. Dubrulle & S. Nazarenko, Phys. Fluids

13, 1995 (2001).

mailto:arnaud.chiffaudel@cea.fr

