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Abstract 

This paper presents an improved prediction method for the heat transfer and pressure 

drop in the shell side of an horizontal shell and tube evaporator. The results from an 

experimental test programme are used in which a wide range of evaporating two-

phase shellside flow data was collected from a TEMA E-shell evaporator. The data is 

compared with shellside heat transfer coefficient and pressure drop models for 

homogeneous and stratified flow. The comparison suggests deterioration in the heat 

transfer data at low mass fluxes consistent with a transition from homogeneous to 

stratified flow. The pressure drop data suggests a stratified flow across the full test 

range. A new model is presented which suggests the transition in the heat transfer data 

may be due to the extent of tube wetting in the upper tube bundle. The new model 

which also takes into account the orientation of the shellside baffles provides a vast 

improvement on the predictions of the homogenous type models currently used in 

commercial design software. The new model would enable designers of shellside 
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evaporators/reboilers to avoid operating conditions where poor heat transfer could be 

expected and would also enable changes in process conditions to be assessed for their 

implications on likely heat transfer performance.    

 

1 Introduction 

 

A large number of industrial shell and tube heat exchangers are designed with an 

evaporating fluid on the shell side. Forced circulation shell side evaporation is 

generally associated with the design of feed-effluent heat exchangers and reboilers for 

distillation columns. Good design of a heat exchanger with shell side evaporation 

involves obtaining a good heat transfer coefficient whilst remaining within the process 

pressure drop constraints.  With shell side two-phase flow, heat transfer performance 

is strongly linked to the two-phase flow pattern. In order to maintain the boiling 

process throughout the heat exchanger it is essential that the heat transfer surface 

remains wetted and that a separation of the liquid and vapour phases does not lead to 

regions in which the outer surface of the tubes become surrounded by vapour. 

 

Despite the widespread use of heat exchangers with shell side evaporation, there are 

very few data available in the open literature for boiling two-phase flows on the 

shellside of real industrial shell and tube heat exchanger geometries. Many of the 

models and correlations for two-phase pressure drop and flow patterns are based on 

test data obtained from rectangular tube bundle test sections [1] – [5].  This data can 

only truly represent the crossflow stream of a real exchanger.  Other data from real 

exchanger geometries with bypass and leakage streams [6] present information for 
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adiabatic flows of air/water and cannot truly represent the full range of qualities and 

conditions for a boiling two-phase flow.    

 

As a result, it is common place for the designer of a heat exchanger with shell side 

evaporation to assume that the liquid and vapour phases are sufficiently well mixed to 

ensure that the heat transfer surface remains fully wetted and that the nucleate and 

convective boiling processes can be maintained. However, in practice the flow regime 

is changing as the liquid evaporates and the distribution of the phases is unclear, 

particular in the case of industrial scale evaporators. The work presented in this paper 

attempts to address the effect of flow regimes on the heat transfer and pressure drop 

performance.  Data generated from an HTFS research programme is used to present a 

model describing a transition in the shell side flow pattern from a homogeneous to a 

separated/stratified two-phase flow where the heat transfer performance is likely to be 

poor. These conditions occur primarily at low mass flux where current models have 

been found to poorly predict the heat transfer suggesting a better performance than 

actually occurs. The paper describes the experimental data base that the model has 

been developed from and the evidence which suggests that flow stratification may 

occur. The model is then developed and performance of the model is assessed by 

comparison against the data. 

 

2 Test Details 

 

A full description of the test procedures and analysis is given by Doo et al [7] and is 

only briefly outlined here. Tests were undertaken on an industrial scale shell-and-tube 

evaporator with three different shell side geometrical configurations. The test 
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evaporator is a horizontal shell and tube heat exchanger TEMA type AEW unit with a 

single tube pass. It has 97 tubes with a length of 1240 mm, and the unit is large 

enough to represent full scale industrial heat exchangers. The principle geometric 

aspects tested were the orientation of the shellside baffles (vertical or horizontal cut) 

which control the principal flow direction, the baffle pitch and the inclusion of sealing 

strips in the crossflow bypass lane. In all tests the evaporating fluid on the shellside 

was refrigerant R-134A with the fluid on the tubeside being condensing steam. Test 

ranges and diagrams of the three principal geometries are displayed in Table 1 and 

Figure 1.  The test conditions examined are representative of those found in industrial 

applications. Each test provides a wide range of mass fluxes (100-1000 kg/m2s) and 

evaporation conditions (quality ranging from 0.05-0.6) to be investigated. Comparison 

between Test 1 and 2 allow the effects of baffle orientation to be determined and Test 

2 and 3 allow the effect of pitch for a vertical baffle orientation to be investigated. 

 

Data Analysis 

 

The overall heat transfer coefficient for each test run was calculated from the effective 

heat transfer area and measurements of the steam heat load and the mean temperature 

difference. The steam heat load was obtained by measuring the steam condensate flow 

rate at the saturation temperature. The mean temperature difference was based on the 

saturation temperature of the steam on the tube side and on the R-134A saturation 

temperature measured at the shell side outlet nozzle (as the liquid at the inlet nozzle 

may be subject to some sub cooling). The shell side boiling heat transfer coefficient 

was calculated from this value by subtracting the tube side and tube wall heat transfer 

resistances from the overall resistance and taking the reciprocal value. The tube side 
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resistance was estimated based on the predictions of the HTFS shell and tube design 

program TASC.   Uncertainties in the boiling heat transfer coefficient were between 

5% and 30% and were generally higher at higher values of the coefficient. Pressure 

drop measurements were made with the use of two calibrated differential pressure 

transducers. One of the transducers was connected between the shell side inlet and 

outlet nozzles and measured the total shell side pressure drop whereas the other was 

connected between tapping points between the first and last baffle spaces measuring 

the pressure drop across the baffled region of the shellside. The expanded uncertainty 

in the measured pressure drop was generally less than 10%  

 

3 Basis of Shellside Models 

 

The calculations for heat transfer and pressure drop in the shellside of a tube and shell 

heat exchanger are commonly based on a description of the shellside flow first 

introduced by Tinker [8]. A one dimensional flow network approach is taken where 

the shellside geometry is divided into a number of flow paths which can be combined 

to describe the overall shellside flow. This is shown on Figure 2 where the dominant 

cross flows, bypass flows and additional baffle and tube leakage flows are identified.  

The mass flows for each path are calculated by knowing the resistance K factors for 

each path. However, the main assumption made in most models are that during 

evaporative conditions the flow in each path is a well mixed uniformly distributed two 

phase flow resulting in  the same liquid and vapour distribution in each path. This is 

the basis of the homogeneous model. However evidence exists, as discussed by Doo 

et.al. (9) that at a low mass flux conditions a marked drop in heat transfer can be 

associated with liquid-gas stratification.  The experimental data indicates a reduction 
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in heat transfer for low mass fluxes, as shown in Figure 3, which presents the data for 

all heat flux conditions tested and indicates that the heat transfer coefficient reduces 

steadily for mass fluxes below 300 kg/sm2.  Furthermore, evidence of a sizeable 

variation in heat transfer over the cross section of the shell side was obtained by 

plotting tube side outlet temperatures as a ratio of the saturation temperature. Figure 4 

shows tube temperature ratios for tubes at low, mid and upper levels in the tube bank 

and show that while upper levels remain superheated (steam is introduced at 

superheat) the lower levels are substantially sub-cooled. These results go some way to 

suggest that the reduction in heat transfer may be associated with stratification of the 

flow with vapour flow dominating at the top and liquid flow at the bottom. In order to 

assess this hypothesis a stratified flow model to predict the pressure drop and heat 

transfer in the shell side has been developed. A homogeneous model has also been 

constructed which is based on existing methodologies These two models are then 

compared against the data obtained from the experimental programme. 

 

Homogeneous Flow Model 

The calculation for the flow rate and pressure drop in each flow path is undertaken 

using correlations for flow path resistance and is based on the assumption that the 

respective pressure drops in parallel flow paths are equal.  The homogeneous flow 

model created was based on that of the commercial design software HTFS TASC [10]. 

The model assumes that at a given point along the length of the shell, the vapour 

quality in each flow path is equal; i.e. the liquid and vapour phases are evenly 

distributed throughout the flow paths. The pressure drop for this model is calculated 

from the resolution of the iterative network model of the various flow paths. The 

shellside heat transfer coefficient is calculated from correlations which describe 
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nucleate and convective boiling based on the flow rates in each flow path taken from 

the resolution of the shellside flow model.   Pressure loss and heat transfer models are 

used from well established approaches available in the literature and are described in 

detail by Doo [7] and also found in [10].  

 

Stratified Flow Model 

This homogeneous shellside model was adapted to describe stratified shell side flow. 

The stratified flow model was based on the assumption that the bottom of the shell is 

occupied by single phase liquid and the upper section occupied by single phase 

vapour. The pressure drop model is based on two constraints. 

The first is that (as in the homogeneous model) pressure drops in parallel flow paths 

are equal and the second that the pressure drops in the liquid and vapour phases are 

equal. It is also assumed that interface shear between the liquid and vapour phases is 

negligible. 

 

The pressure drop was then calculated using the following procedure: 

 

• Estimate the shellside void fraction 

• Calculate modified flow path areas based on the area covered by the 

liquid/vapour phase 

•  Calculate the pressure drop in each phase based on the new flow areas and the 

shellside flow network model. 

• If the phase pressure drops are equal the calculation is resolved, if not then the 

void fraction is re-estimated and the procedure repeated.  
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The shell side heat transfer coefficient for the stratified flow model requires to be 

consistent with the calculation of the heat transfer between the shell and tube flows. 

The stratified model maintains consistency with the network approach and calculates 

the heat transfer between the shell and tube streams using a local overall heat transfer 

coefficient, U as expressed in equation 1. The first term on the RHS represents the 

shell side convection heat transfer and the other terms, the shell side fouling, tube wall 

conduction, tube side convective heat transfer and fouling respectively. 
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In the stratified model the shell side heat transfer is calculated by a void fraction 

weighted combination of the nucleate/convective boiling coefficient for the liquid 

pool and the single phase vapour coefficient for the upper section of the evaporator, as 

indicated in equation (2) 

 

( ) boilinggggs αεαεα −+= 1      (2) 

 

Where gε is the void fraction obtained from the iterative shell side flow network 

pressure drop model and gα and boilingα  are the vapour phase and boiling heat transfer 

coefficients respectively, established from the correlations used in the homogeneous 

model. 
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4 Results :Heat Transfer 

To examine the homogenous and stratified flow models comparisons were made with 

the experimental heat transfer data for the three test geometries and are presented in 

Figure 5. From the comparisons of Figure 5 it can be seen that for all three test 

conditions the homogenous model gives reasonable predictions of the heat transfer 

coefficient in the higher mass flux range (300-600 kg/m2s) and over predicts by up to 

six times the experimental values in the lower range (100-300 kg/m2s).  In contrast the 

stratified flow model predicts the data more accurately at the low mass fluxes for all 

test conditions where the smaller heat transfer coefficients have been obtained. At 

higher mass fluxes the stratified model under predicts the heat transfer coefficient by 

up to a factor of two.  This is consistent with the argument that a change to a stratified 

flow pattern could be causing deterioration in the heat transfer coefficient in this range. 

The stratified flow pattern would lead to vapour blanketing around some of the upper 

rows in the tube bundle and cause a decrease in the heat transfer coefficient due to the 

fact that the normal boiling mechanisms cannot be maintained in this area. At the 

higher mass fluxes in Figure 5 the heat transfer coefficient is better represented by the 

homogeneous model. 

 

Current models based on homogeneous assumptions result in substantial over 

prediction of the heat transfer and give a false impression of a viable heat exchanger 

design. Thus substantial benefit can be gained by predicting the heat transfer in 

regions of poor heat transfer. The results shown here suggest that the greatest benefit 

would be obtained from a model that could predict the onset of the stratified flow 

regime and which could be used to prevent operation with this type of flow.  The 

development of such a model is discussed below. 
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5 Proposed Model (Heat Transfer) 

 

An assessment of the open literature revealed that there was very little information on 

the subject of flow pattern transitions in two-phase shellside flow. The only available 

shellside maps were based on very limited air/water tests in ideal geometries. In 

addition the transitions are described in terms of dimensionless groups which are 

empirically correlated to experimental data. There is far more information on the 

subject of flow pattern transition in tubeside flow, which is in turn based on a far 

larger range of experimental data. The shellside maps of Grant [11] gave a reasonably 

good representation of the transition in the experimental data. However due to the 

limited data on which these flow pattern maps are based and also in the inherent 

limitations due to the empirical nature of the model, it was decided to use the more 

established and better understood tube based flow regime models to describe the 

transition.  

 

Various tube geometry models were examined to provide a theoretical basis for 

describing the flow pattern transition to stratified flow in the shell side geometry [12] 

– [14]. From this review, the Taitel and Dukler method [14] proved to give the best 

agreement with the experimental data and also had a theoretical basis from which a 

shellside flow model could be developed. The authors base the model on the idea that 

an increase in the gas velocity over the stratified liquid surface will eventually cause a 

wave large enough to form a blockage in the pipe causing the onset of intermittent 

flow. The model begins by considering a stratified flow with a wave existing on the 

surface over which the gas flows, as shown in Figure 6. When a critical gas velocity is 
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reached there is a transition from stratified to intermittent flow in the tubes. This 

critical velocity is calculated using equation 3 
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Where gA  is the cross sectional flow area of the vapour in the stratified flow without 

the wave, lA  and lh  are the corresponding liquid phase area and height, ng  is the 

acceleration due to gravity and 2C is given by: 

 

 
D
h

C L−= 12      (4) 

 

D  is the diameter of the tube corresponding with the liquid height lh . A superficial 

gas velocity value higher than that predicted by equation 2 would cause a departure 

from stratified flow.  

 

The assumption made on applying this type of transition to the shellside is that the 

velocity high enough to cause a departure from stratified flow in the tubeside case 

would be high enough to cause a transition from stratified flow in the shellside case. 

Although the Taitel/Dukler model describes the transition from stratified flow to 

intermittent flow in tubes, it is assumed in the shellside case that the transition 

represents a departure from stratified flow to a regime where there is sufficient tube 

wetting in the upper bundle for the application of the homogeneous boiling heat 
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transfer model. This argument would seem inherently more applicable to the shellside 

geometry when the baffle cut orientation is vertical as opposed to horizontal. With a 

vertical baffle cut the stratified flow pattern would be similar to that shown in Figure 

7, whereas with the horizontal baffle cut it is more likely to be similar to that shown in 

Figure 8. 

 

In fact the heat transfer data from the experimental tests suggested there may be a 

more gradual transition in the two-phase flow pattern with the horizontal baffle cut. 

This may be explained by the fact that horizontal baffles which force up-and-over 

flow hinder the process of stratification and maintain tube wetting of the upper tube 

rows over a wider mass flux range. 

 

To assess how the model of Taitel and Dukler compares with the shellside data it was 

essential to generate predictions of the critical gas velocity from equation 3 for the 

shellside case. The superficial gas velocity of a particular flow can be determined 

from equation 5.  

 
g

sg
xmu

ρ
&

=      (5) 

For shellside flow, the mass flux m& is based on the minimum-crossflow and bypass 

areas and x  is the vapour mass quality. The value of sgu obtained from equation 5 is 

compared with the value for the critical vapour phase velocity from equation 3. 

Calculation of the critical vapour phase velocity requires calculation of the parameters 

2C , gA  and 
l

l

dh
dA  which are all functions of the shellside void fraction gε . The void 

fraction used is calculated by running the stratified flow model at the given conditions 

of mass flow rate and vapour quality. In the tubeside model a value of )(Critgsg uu >  



Improved prediction of the heat transfer and pressure drop in evaporative shell side heat exchangers 

 

13

would imply a transition from stratified to intermittent flow. As some of the data 

suggested a more gradual transition it was decided to create a model which would be 

able to describe the process of wetting an increasing fraction of the tubes in the upper 

tube bundle. A wetting factor was introduced that describes the fraction of the tubes in 

the upper bundle that are surrounded by liquid. A value of 0=W implies that the flow 

is completely stratified as in Figure 9(a) with no wetting of the upper tube bundle, 

whereas 1=W  implies that all of the tubes in the upper bundle are surrounded by a 

dispersed liquid flow, as shown in Figure 9(b). 

   

 

Equations 6 – 8 were used to control the range of gas superficial velocities over which 

the transition from no tube wetting in the upper bundle to complete tube wetting 

occurs.  
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b1 and b2 are factors to determine the lower and upper critical velocity boundaries 

between the homogeneous and stratified conditions. These must be chosen to define 

the range of critical velocities over which the flow regime change occurs, but also 

reflect inadequacies in using the Taitel and Dukler approach. The equation for W in 

(8) represents a linear interpolation of tube wetting due to liquid entrainment in the 
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vapour phase between the lower and upper boundary conditions. These factors have 

been determined by comparison of the model predictions with the experimental test 

data. It has been found that the most appropriate values are influenced by the 

orientation of the baffles indicating an effect on the flow regime of the baffle 

arrangement. The values to give the best agreement with the results for the horizontal 

baffle cut (Test 1 data) are shown in (9). Whereas with the vertical baffle cut (Test 2 

and Test 3 data) the factors  shown in  (10) gave the best result. 

   

             Horizontal baffles  25.01 =b  and 75.12 =b     (9) 

      Vertical baffles       75.01 =b  and 25.12 =b                             (10) 

 

Figure 10 shows a comparison of the heat transfer coefficient predicted using the 

transition model compared with the experimental data and predictions using the 

homogeneous heat transfer model. It can be seen that the new model is a vast 

improvement on the predictions of the homogeneous type model at the low mass flux 

range. In all three test geometries, the introduction of the transition model vastly 

improves the prediction of the experimental data. Using this heat transfer model 

would prevent the design of heat exchangers being undersized when based on current 

methods, which predict an over optimistic heat transfer coefficient. In addition the 

model would be able to more accurately predict the performance of an existing heat 

exchanger when there is a change in process or operating conditions.  A disadvantage 

is that the flow regime transition has been established semi-empirically from the test 

data and therefore could limit the generality of the model. However, the test data 

reflects realistic conditions encountered in industrial sized heat exchangers which 

gives confidence on the generality of the predictions. 
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Pressure Drop 

 

Figure 11 below shows the experimental data plotted against the predictions of the 

stratified flow and homogeneous flow pressure drop models for each test. Over the 

whole range of test data it appears that the best comparison with experimental results 

is achieved using the stratified flow model. One proposed explanation for this would 

be that the flow is predominantly stratified over the full range but with entrainment of 

liquid at higher mass fluxes. In this case, the transition in the heat transfer data 

represents a point at which there is sufficient entrainment of liquid in the vapour 

phase to maintain the boiling process in the upper tube rows (Similar to the 

arrangement displayed in Figure 9(b)). In this case the pressure drop would be largely 

unaffected by the transition whereas the heat transfer coefficient would be vastly 

improved. At this stage improvement in model development would be enhanced by 

visualisation of the flow regime conditions occurring in the shell side. This would 

enable a better insight into the physical mechanisms that cause the transition in flow 

pattern and lead to a deterioration in heat transfer performance. 

 

The overall accuracy of the heat transfer and pressure drop predictions is shown on 

Figure 12(a) and 12(b), where a direct comparison between prediction and 

experimental values are made for Tests 1, 2 and 3. The heat transfer predictions can 

be achieved to an RMS average accuracy of +/- 26%, while the pressure drop can be 

achieved to an RMS average of 30%. The general spread of errors is seen in the 

graphs where an over prediction of the heat transfer coefficient is apparent at lower 
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values and a slight under prediction at higher values. The pressure drop is moderately 

over predicted over the whole range. 

 

 

6 Conclusions 

 

A shellside model has been created which accounts for a complete stratification of the 

liquid and vapour phases. The model utilises the Taitel and Dukler model for the 

transition from stratified to intermittent flow. The nature of the flow pattern transition 

on the shellside appears to be related to the orientation of the baffle cut. The 

horizontal baffle cut giving a more gradual transition to stratified flow. 

 

The new model provides significant improvements in the predictions of both heat 

transfer coefficient and pressure drop when compared with the shellside evaporation 

test data. It accounts for the affects of a transition to a gravity separation of the liquid 

and vapour phases and would prevent designers from producing heat exchangers with 

insufficient area when a stratified flow pattern is likely. The model could also be used 

to assess the implications of changing operating conditions on the likely heat transfer 

performance of an existing evaporator.   
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Nomenclature 

 

gA  Cross sectional area covered by gas/vapour phase in stratified flow (m2) 

lA  Cross sectional area covered by liquid phase in stratified flow (m2) 

2C  Parameter defined in equation (3) 

D  Tube or shell internal diameter (m) 

ng  Acceleration due to gravity (m/s2) 

lh  Height of liquid/vapour interface in stratified flow (m) 

ng  Acceleration due to gravity (m/s2) 

bcLow  Lower boundary condition in transition region of new model 

m&  Total flow mass flux / mass velocity (kg/m2s) 

N number of experimental data points 

RMS Root Mean Square average =
2

exp1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
predicted

erimentalpredicted
N

 

rt,rw tube and wall fouling resistance ( m2K/W) 

)(Critgu  Critical gas velocity in transition equation (2) 

bcUp  Upper boundary condition in transition region of new model  

sgu  Superficial gas phase velocity (m/s) 

y wall thickness (m) 

W  Tube wetting parameter in new transition model 

x  Vapour mass fraction / quality 

boilingα  Heat transfer coefficient from homogeneous shellside model (W/m2K) 

gα  Vapour phase heat transfer coefficient in stratified flow (W/m2K) 
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sα  Shell side heat transfer coefficient (W/m2K) 

stratifiedα Heat transfer coefficient from stratified shellside model (W/m2K) 

tα  tube side heat transfer coefficient (W/m2K) 

λw tube wall thermal conductivity ( W/mK) 

 

gε  Void fraction in stratified flow 

gρ  Vapour/gas density (kg/m3) 

lρ  Liquid phase density (kg/m3) 
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Figure 1- Baffle arrangements for different test geometries 

  
 

Test 1 – horizontal baffle  Test 2 – vertical baffle cut Test 3 – vertical baffle cut increased pitch 
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Figure 2 – Shellside flow network proposed by Tinker [8] 
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Figure 3 Plot of heat transfer coefficient versus mass flux for various heat fluxes (18-

49 kW/m2) 
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Figure 4 Measured to Saturated Temperature Ratio vs. Mass flux for tubeside 

thermocouples in Test 3, (Heat Flux=34 kW/m2) 
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Figure 5 – Boiling heat transfer coefficient data and model predictions 

Test 1: horizontal baffle cut

Test 2: vertical baffle cut

Test 3: vertical baffle cut, increased pitch 
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Figure 6 – Instability for a solitary wave [14]
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Figure 7 – Stratified shellside flow for vertical baffle cut 
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Figure 8 - Stratified Flow in Horizontal Baffle-Orientation [11] 
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(a) – Completely stratified       (b) – Flow with liquid entrainment 

 

Figure 9 – Completely Stratified flow and Stratified flow with liquid entrainment 
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Figure 10 – Comparison of new heat transfer model with widely used homogeneous model. 
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Figure 11 – Comparisons of two-phase pressure drop data with shellside models 
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(a) Pressure drop 

 

(b) Heat transfer coefficient 

 

Figure 12 Comparison between predicted and experimental values 
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Table 1 Test conditions for experimental tests 

 

 TEST 1 TEST 2 TEST 3 

Heat load (kW) 108-255 120-220 146-230 

Mean Tem Difference (K) 7.4-16.4 5.5-16.7 7.5-15 

R-134A inlet pressure ( bar) 5.8-9.3 5.6-8.13 6.43-7.39 

Steam inlet pressure (bar) 0.041-0.101 0.038-0.094 0.048-0.087 

R-134A mass Flux ( kg/m2s) 140-856 162-1023 108-504 

Heat Flux (kW/m2) 19-44 24-37 26-37 

Baffle pitch (mm) 156 156 260 

Baffle orientation  horizontal vertical vertical 

Sealing strips in Bypass yes yes no 

Outlet vapour quality  0.11-0.68 0.09-0.5 0.11-0.56 

Recirculation Ratio 0.47-8.1 1-10.1 0.79-8.1 


