52 research outputs found

    Sharpness, Restart and Acceleration

    Get PDF
    International audienceThe Łojasiewicz inequality shows that sharpness bounds on the minimum of convex optimization problems hold almost generically. Sharpness directly controls the performance of restart schemes, as observed by Nemirovskii and Nesterov [1985]. The constants quantifying these sharpness bounds are of course unobservable , but we show that optimal restart strategies are robust, in the sense that, in some important cases, finding the best restart scheme only requires a log scale grid search. Overall then, restart schemes generically accelerate accelerated first-order methods

    Sharpness, Restart and Acceleration

    Get PDF
    The Łojasievicz inequality shows that sharpness bounds on the minimum of convex optimization problems hold almost generically. Here, we show that sharpness directly controls the performance of restart schemes. The constants quantifying sharpness are of course unobservable, but we show that optimal restart strategies are fairly robust, and searching for the best scheme only increases the complexity by a logarithmic factor compared to the optimal bound. Overall then, restart schemes generically accelerate accelerated methods

    Mirror Descent and Convex Optimization Problems With Non-Smooth Inequality Constraints

    Full text link
    We consider the problem of minimization of a convex function on a simple set with convex non-smooth inequality constraint and describe first-order methods to solve such problems in different situations: smooth or non-smooth objective function; convex or strongly convex objective and constraint; deterministic or randomized information about the objective and constraint. We hope that it is convenient for a reader to have all the methods for different settings in one place. Described methods are based on Mirror Descent algorithm and switching subgradient scheme. One of our focus is to propose, for the listed different settings, a Mirror Descent with adaptive stepsizes and adaptive stopping rule. This means that neither stepsize nor stopping rule require to know the Lipschitz constant of the objective or constraint. We also construct Mirror Descent for problems with objective function, which is not Lipschitz continuous, e.g. is a quadratic function. Besides that, we address the problem of recovering the solution of the dual problem

    Computational Complexity versus Statistical Performance on Sparse Recovery Problems

    Get PDF
    We show that several classical quantities controlling compressed sensing performance directly match classical parameters controlling algorithmic complexity. We first describe linearly convergent restart schemes on first-order methods solving a broad range of compressed sensing problems, where sharpness at the optimum controls convergence speed. We show that for sparse recovery problems, this sharpness can be written as a condition number, given by the ratio between true signal sparsity and the largest signal size that can be recovered by the observation matrix. In a similar vein, Renegar's condition number is a data-driven complexity measure for convex programs, generalizing classical condition numbers for linear systems. We show that for a broad class of compressed sensing problems, the worst case value of this algorithmic complexity measure taken over all signals matches the restricted singular value of the observation matrix which controls robust recovery performance. Overall, this means in both cases that, in compressed sensing problems, a single parameter directly controls both computational complexity and recovery performance. Numerical experiments illustrate these points using several classical algorithms.Comment: Final version, to appear in information and Inferenc
    corecore