
HAL Id: hal-01474362
https://hal.archives-ouvertes.fr/hal-01474362

Preprint submitted on 22 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sharpness, Restart and Acceleration
Vincent Roulet, Alexandre d’Aspremont

To cite this version:

Vincent Roulet, Alexandre d’Aspremont. Sharpness, Restart and Acceleration. 2017. �hal-01474362�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/80408091?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-01474362
https://hal.archives-ouvertes.fr

Sharpness, Restart and Acceleration

Vincent Roulet VICNENT.ROULET@INRIA.FR

Alexandre d’Aspremont ASPREMON@ENS.FR

INRIA - Sierra Project-team
Département d’Informatique de l’Ecole Normale Supérieure (CNRS - ENS - INRIA)
Paris, France

Abstract
The Łojasievicz inequality shows that sharpness bounds on the minimum of convex optimization

problems hold almost generically. Here, we show that sharpness directly controls the performance
of restart schemes. The constants quantifying sharpness are of course unobservable, but we show
that optimal restart strategies are fairly robust, and searching for the best scheme only increases the
complexity by a logarithmic factor compared to the optimal bound. Overall then, restart schemes
generically accelerate accelerated methods.

Introduction

We focus on solving an unconstrained convex optimization problem written

minimize f(x) (P)

where f is a convex function defined on Rn. The complexity of solving this problem using first
order methods is controlled by smoothness assumptions on the gradient of f . Here, we will assume
that ∇f is Hölder continuous, i.e. that there are constants s ≥ 1 and L > 0 such that

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖s−1, (Smooth)

for every x, y ∈ Rn, where ‖.‖ is the Euclidean norm. This condition generalizes the typical
smoothness condition and controls the convergence of optimal methods for convex optimization
problems (Nesterov, 2015). Here we make the following additional assumption on the sharpness of
minimizers

µd(x,X∗)r ≤ f(x)− f∗, (Sharp)

for every x ∈ K. where f∗ is the minimum of f , K ⊂ Rn is a compact set, d(x,X∗) the Euclidean
distance from x to the setX∗ ⊂ K of minimizers of f , and r > 0, µ > 0 are constants. This defines
a lower bound on the function, which generalizes similar lower bounds produced by strong or uni-
form convexity conditions for example. Strong and uniform convexity guarantee linear (Nesterov,
2003) convergence and faster polynomial rates (Iouditski and Nesterov, 2014) respectively when
solving (P). Here, we use restart schemes to show that the sharpness also leads to faster rates.

Real analytic functions all satisfy (Sharp) locally, and this inequality is then known as Łojasievicz’s
inequality (Lojasiewicz, 1963). This result has recently been generalized to a much wider class of
non-smooth convex functions (Lojasiewicz, 1993; Bolte et al., 2007). Since (Sharp) essentially
measures the sharpness of minimizers, it holds somewhat generically, meaning we should typically

1

expect better convergence rates using restart schemes when r or µ are nontrivial. On the other hand
this inequality is purely descriptive, linking sharpness with faster rates, as we have no hope of ever
observing either r or µ, and deriving adaptive schemes will be key for practical performance.

Restart schemes were already studied for strongly or uniformly convex functions (Nemirovskii
and Nesterov, 1985; Nesterov, 2007; Iouditski and Nesterov, 2014). In particular, (Nemirovskii and
Nesterov, 1985) link a “strict minimum” condition akin to (Sharp) with faster convergence rates
using restart schemes which form the basis of our results, but do not study the cost of adaptation.
More recently, (Sharp) was used to characterize the convergence of alternating and splitting methods
(Attouch et al., 2010; Frankel et al., 2014), while several heuristics (O’Donoghue and Candes, 2015;
Su et al., 2014; Giselsson and Boyd, 2014) studied adaptive restart schemes to speed up convergence
of optimal methods. The robustness of restart schemes was studied in (Fercoq and Qu, 2016) in the
strongly convex case. Sharpness was used to prove linear converge in matrix games in (Gilpin et al.,
2012).

Our contribution here is to derive optimal scheduled restart schemes for convex functions with
Hölder continuous gradient and to show that these schemes can be made adaptive with nearly opti-
mal complexity (up to a squared log term). We also show that when the optimal value of problem (P)
(or an accurate termination criterion) is known, then convergence can be further accelerated by stop-
ping inner iterations once a certain target precision has been reached. Here too we show that restart
schemes can be made adaptive to the Łojasievicz’s inequality parameters, with a much smaller cost
than in the general case.

The paper is organized as follows. In Section 1, we recall some key results regarding Łojasievicz’s
inequality on convex subanalytic functions, and study the link between sharpness and smoothness.
In Section 2, we present scheduled restart strategies for smooth convex functions satisfying the
Łojasievicz inequality, together with adaptive variants. In Section 3, we generalize these results to
functions with Hölder continuous gradients. In Section 4, we present adaptive restart schemes when
f∗ is known. Finally, we describe numerical experiments in Section 5.

Notations

In what follows, we write f∗ the minimum of f , and X∗ the set of minimizers, while d(x, S) is the
Euclidean distance from a point x ∈ Rn to a set S ⊂ Rn. For a real a, dae and bac are respectively
the smallest integer larger than or equal to a and the largest integer smaller than or equal to a.

1. Sharpness

The notion of sharp minimum has been extensively studied in (Lojasiewicz, 1963, 1993; Burke
et al., 2002). Roulet et al. (2015) showed its connections to statistical performance of compressed
sensing performance. We briefly recall some consequences of these results below. Further details
are given in Appendix A.

1.1 The Łojasevicz Inequality

The Łojasewicz inequality (Lojasiewicz, 1963, 1993) shows that if a real function f defined on Rn
is analytic then for every compact set K ⊂ dom f there exists r > 0 and µ > 0 such that

µd(x,X∗)r ≤ f(x)− f∗,

2

for every x ∈ K. An equivalent and better known formulation shows that if x∗ is a critical point of
f , i.e. ∇f(x∗) = 0, then there is θ ∈ [0, 1[such that

|f(x)− f(x∗)|θ

‖∇f(x)‖

is bounded in a neighborhood of x∗. Compared with the previous formulation, θ = 1 − 1/r here.
For θ = 1/2, this matches the gradient dominated property introduced by (Polyak, 1963) and
recently used by e.g. (Karimi et al., 2016) to simplify linear convergence proofs for a number of
classical algorithms. This also directly implies that any local minimizer is in fact a global minimizer,
even when f is nonconvex. These inequalities are easy to prove for univariate functions which is
illustrated in Appendix A.1., but they are much harder to prove in arbitrary dimension n and we
refer the reader to e.g. (Bierstone and Milman, 1988) for details.

The earlier references cited above require f to be analytic around its critical points. However,
Łojasewicz’s inequality can be generalized to a much broader class of functions, including certain
C1 functions (Kurdyka, 1998). In particular, Bolte et al. (2007) show an extension of Łojasewicz’s
inequality holding for a broad class of nonsmooth functions called subanalytic. We recall their
definition in Appendix A.2. Inequality (Sharp) is shown using topological arguments that are far
from constructive, hence outside of some particular cases (e.g. strong convexity), we cannot assume
that the constants in (Sharp) are known, even approximately. Nevertheless, (Sharp) has a fairly
intuitive interpretation as a sharpness measure for the minimum of f and can easily be linked to the
smoothness exponent as we detail below.

1.2 Sharpness and smoothness

Let f be a convex function on Rn whose gradient is Hölder continuous, i.e. satisfies (Smooth) with
parameters (s, L). This property ensures that,

f(x) ≤ f(y) +∇f(y)T (x− y) +
L

s
‖x− y‖s,

for every x, y ∈ Rn. For a given x ∈ Rn, setting y to be the projection of x onto X∗, this yields the
following upper bound on suboptimality

f(x)− f∗ ≤ L

s
d(x,X∗)s. (1)

Now assume that f satisfies the sharpness assumption (Sharp) on a set K with parameters (r, µ).
Combining (1) and (Sharp) we get for every x ∈ K,

sµ

L
≤ d(x,X∗)s−r.

This means that we necessarily have s ≤ r if we take x → X∗. Moreover if s < r, this last
inequality can only be valid on a bounded set, i.e. either smoothness or sharpness or both are valid
only on a bounded set. In the following, we write

κ , L
2
s /µ

2
r (2)

3

a generalized condition number for the function f . If r = s = 2, this matches the classical condition
number of the function. Finally, we write

τ , 1− s

r
, (3)

another condition number based on the ratio of powers in inequalities (Smooth) and (Sharp).

2. Scheduled restarts for smooth convex problems

In this section we seek to solve (P) assuming that the function f is smooth, i.e. satisfies (Smooth)
with s = 2 and L > 0. Without further assumptions on f , the optimal algorithm to solve the smooth
convex optimization problem (P) is Nesterov’s accelerated gradient method (Nesterov, 1983). Given
an initial point x0, this algorithm outputs, after t iterations, a point y = A(x0, t) such that

f(y)− f∗ ≤ cL

t2
d(x0, X

∗)2, (4)

where c > 0 denotes a universal constant (whose value will be allowed to vary in what follows, with
c = 4 here). More details about Nesterov’s algorithm are given in Appendix B.2.

In what follows, we will also assume that f satisfies (Sharp) with parameters (r, µ) on a set
K ⊇ X∗, which means

µd(x,X∗)r ≤ f(x)− f∗, for every x ∈ K.

As mentioned before if r > s = 2, this property is necessarily local, i.e. K is bounded. We assume
then that given a starting point x0 ∈ Rn, sharpness is satisfied on the sublevel set {x, f(x) ≤
f(x0)}. Remark that if this property is valid on an open set K ⊃ X∗, it will also be valid on any
compact setK ′ ⊃ K with the same exponent r but a potentially lower constant µ. Scheduled restarts
that we present rely on a global sharpness hypothesis on the sublevel set defined by the initial point
and are not locally adaptive to constant µ. Restarts on criterion that we present in section 4 with
the additional hypothesis that f∗ is known, show for their part local adaptivity. We now describe a
restart scheme exploiting this extra regularity assumption to improve the computational complexity
of solving problem (P) using accelerated methods.

2.1 Scheduled restarts

Here we schedule the number of iterations tk made by Nesterov’s algorithm before the kth restart.
Our scheme is described below.

Algorithm 1 Scheduled restarts for smooth convex minimisation (RESTART)
Inputs : x0 ∈ Rn and a sequence tk for k = 1, . . . , R.
for k = 1, . . . , R do

xk := A(xk−1, tk) (RESTART)

end for
Output : x̂ := xR

The analysis of this scheme and the following ones rely on two steps. First we choose schedules
that ensure linear convergence in the iterates xk at a given rate. Then we compute the linear rate

4

to that achieves the optimal bound in terms of total number of iterations. We begin therefore by
showing a technical lemma which assumes linear convergence holds, and connects the precision
reached, the total number of inner iterations N , and the growth of tk.

Lemma 2.1 Let xk be a sequence whose kth iterate is generated from previous one by an algorithm
that needs tk iterations and denote N =

∑R
k=1 tk the total number of iterations to output a point

x̂ = xR. Suppose setting
tk = Ceαk, k = 1, . . . , R

for some C > 0 and α ≥ 0 ensures that objective values f(xk) converge linearly, i.e.

f(xk)− f∗ ≤ νe−γk, (5)

for all k ≥ 0 with ν ≥ 0 and γ ≥ 0. Then precision at the output is given by,

f(x̂)− f∗ ≤ ν exp(−γN/C), when α = 0,

and
f(x̂)− f∗ ≤ ν

(αe−αC−1N + 1)
γ
α

, when α > 0.

Proof When α = 0, N = RC, and inserting this in (5) at the last point x̂ where k = R yields the
desired result. On the other hand, when α > 0, we have N =

∑R
k=1 tk = Ceα e

αR−1
eα−1 , which gives

R =
log
(
eα−1
eαC N + 1

)
α

.

Inserting this in (5) at the last point, we get

f(x̂)− f∗ ≤ ν exp

(
−γ
α

log

(
eα − 1

eαC
N + 1

))
≤ ν

(αe−αC−1N + 1)
γ
α

,

where we used ex − 1 ≥ x. This yields the second part of the result.

The last approximation in the case τ > 0 simplifies the analysis that follows without significantly
affecting the bounds. Also, in practice tk is an integer, but we show in Appendix C that using t̃k =
dtke does not significantly affect the bounds above. Remark that convergence bounds are generally
linear or polynomial such that we can extract a subsequence that converges linearly. Therefore our
approach does not restrict the analysis of our scheme. It simplifies it and can be used for other
algorithms like the gradient descent (see Section 2.3).

We now analyze restart schedules tk that ensure linear convergence. Our choice of tk will
heavily depend on the ratio between r and s (with s = 2 for smooth functions here), incorporated
in the parameter τ = 1 − s/r defined in (3). Below, we show that if τ = 0, a constant schedule is
sufficient to ensure linear convergence. When τ > 0, we need a geometrically increasing number
of iterations for each cycle.

5

Proposition 2.2 Let f be a smooth convex function satisfying (Smooth) with parameter L, and
x0 ∈ Rn. Assume that f satisfies the sharpness property (Sharp) with parameters (r, µ) on a set
K, such that {x, f(x) ≤ f(x0)} ⊂ K. We write xk the sequence generated by the (RESTART)
scheme to solve (P) with iteration schedule tk = C∗κ,τe

τk, for k = 1, . . . , R, where

C∗κ,τ , e1−τ (cκ)
1
2 (f(x0)− f∗)−

τ
2 , (6)

with κ and τ defined in (2) and (3) respectively. The precision reached at the last point x̂ is given
by, when τ = 0,

f(x̂)− f∗ ≤ exp
(
−2e−1(cκ)−

1
2N
)

(f(x0)− f∗) (7)

= O
(

exp(−κ−
1
2N)

)
,

while, when τ > 0,

f(x̂)− f∗ ≤ f(x0)− f∗(
τe−1(f(x0)− f∗)

τ
2 (cκ)−

1
2N + 1

) 2
τ

(8)

= O
(
κ

1
τN−

2
τ

)
,

where N =
∑R

k=1 tk is the total number of iterations.

Proof Our strategy is to choose tk such that the objective is geometrically decreasing, i.e.

f (xk)− f∗ ≤ e−γk(f(x0)− f∗), (9)

for some γ ≥ 0 depending on the choice of tk. This directly holds for k = 0 and any γ ≥ 0.
Combining (Sharp) with the complexity bound in (4), we get

f (xk)− f∗ ≤
cκ

t2k
(f (xk−1)− f∗)

2
r .

Assuming that (9) is satisfied at iteration k − 1 for a given γ, we have

f (xk)− f∗ ≤
cκe−γ

2
r
(k−1)

t2k
(f(x0)− f∗)

2
r ,

and to ensure (9) at iteration k, we impose

cκe−γ
2
r
(k−1)

t2k
(f(x0)− f∗)

2
r ≤ e−γk(f(x0)− f∗).

Rearranging terms in last inequality, using τ defined in (3), we get

tk ≥ e
γ(1−τ)

2 (cκ)
1
2 (f(x0)− f∗)−

τ
2 e

τγ
2
k. (10)

6

For a given γ ≥ 0, choosing tk = Ceαk where

C = e
γ(1−τ)

2 (cκ)
1
2 (f(x0)− f∗)−

τ
2

α =
τγ

2
,

and Lemma 2.1 then yields, when τ = 0,

f(x̂)− f∗ ≤ exp
(
−γe−

γ
2 (cκ)−

1
2N
)

(f(x0)− f∗),

while, when τ > 0,

f(x̂)− f∗ ≤ (f(x0)− f∗)(
τ
2γe

− γ
2 (cκ)−

1
2 (f(x0)− f∗)

τ
2N + 1

) 2
τ

.

These bounds are minimal for γ = 2, which yields the desired result.

We also get the following corollary on more generic restart schedules, which will prove useful in
further results on adaptivity.

Corollary 2.3 Let f be a smooth convex function satisfying (Smooth) with parameter L, and x0 ∈
Rn. Assume that f satisfies the sharpness property (Sharp) with parameters (r, µ) on a set K, such
that {x, f(x) ≤ f(x0)} ⊂ K. We write xk the sequence generated by the (RESTART) scheme to
solve (P). Given general schedules of the form{

tk = C if τ = 0,
tk = Ceαk if τ > 0,

we have the following complexity bounds, if τ = 0 and C ≥ C∗κ,0,

f(x̂)− f∗ ≤
(cκ
C2

)N
C

(f(x0)− f∗), (11)

while, if τ > 0 and C ≥ C(α),

f(x̂)− f∗ ≤ f(x0)− f∗

(αe−αC−1N + 1)
2
τ

, (12)

where
C(α) , e

α(1−τ)
τ (cκ)

1
2 (f(x0)− f∗)−

τ
2 , (13)

and N =
∑R

k=1 tk is the total number of iterations.

Proof Given general schedules of the form{
tk = C if τ = 0,
tk = Ceαk if τ > 0,

the best value of γ satisfying condition (10) for any k ≥ 0 in Proposition 2.2 are given by{
γ = log

(
C2

cκ

)
if τ = 0 and C ≥ C∗κ,0,

γ = 2α
τ if τ > 0 and C ≥ C(α).

7

As above, plugging these values into the bounds of Lemma 2.1 yields the desired result.

When τ = 0, bound (7) matches the classical complexity bound for smooth strongly convex func-
tions. When τ > 0 on the other hand, bound (8) highlights a much faster convergence rate than ac-
celerated gradient methods. The sharper the function (i.e. the smaller r), the faster the convergence.
This matches the lower bounds for optimizing smooth and sharp functions functions (Nemirovskii
and Nesterov, 1985, Page 6) up to constant factors. Also, setting tk = C∗κ,τe

τk yields continuous
bounds on precision, i.e. when τ → 0, bound (8) converges to bound (7). This also shows that for
τ near zero, constant restart schemes are almost optimal.

2.2 Adaptive scheduled restart

The previous restart schedules depend on sharpness parameters (r, µ) in (Sharp). In general, these
values are neither observed nor known a priori. Making our restart scheme adaptive is thus crucial to
its practical performance. Fortunately, we show below that a simple logarithmic grid search strategy
on these parameters is enough to guarantee nearly optimal performance.

We run several schemes with a fixed number of inner iterations N to perform a log-scale grid
search on τ and κ. We define these schemes as follows.

Si,0 : (RESTART) scheme with tk = Ci,

Si,j : (RESTART) scheme with tk = Cie
τjk,

(14)

where Ci = 2i and τj = 2−j . We stop these schemes when the total number of inner algorithm
iterations has exceedN , i.e. at the smallestR such that

∑R
k=1 tk ≥ N . The size of the grid search in

Ci is naturally bounded as we cannot restart the algorithm after more than N total inner iterations,
so i ∈ [1, . . . , blog2Nc]. We will also show that when τ is smaller than 1/N , a constant schedule
performs as well as the optimal geometrically increasing schedule, which means we can also choose
j ∈ [1, . . . , dlog2Ne]. The following result details the convergence of this method.

Proposition 2.4 Let f be a smooth convex function satisfying (Smooth) with parameter L, x0 ∈ Rn
and N a given number of iterations. Assume that f satisfies the sharpness property (Sharp) with
parameters (r, µ) on a set K, such that {x, f(x) ≤ f(x0)} ⊂ K. We run schemes Si,j defined in
(14) to solve (P) for i ∈ [1, . . . , blog2Nc] and j ∈ [0, . . . , dlog2Ne], stopping each time after N
total inner algorithm iterations i.e. for R such that

∑R
k=1 tk ≥ N . Assume N is large enough, i.e.

N ≥ 2C∗κ,τ , and that, if 1
N > τ > 0, C∗κ,τ > 1.

If τ = 0, there exists i ∈ [1, . . . , blog2Nc] such that scheme Si,0 achieves a precision given by

f(x̂)− f∗ ≤ exp
(
−e−1(cκ)−

1
2N
)

(f(x0)− f∗).

If τ > 0, there exist i ∈ [1, . . . , blog2Nc} and j ∈ [1, . . . , dlog2Ne] such that scheme Si,j
achieves a precision given by

f(x̂)− f∗ ≤ f(x0)− f∗(
τe−1(cκ)−

1
2 (f(x0)− f∗)

τ
2 (N − 1)/4 + 1

) 2
τ

.

Overall, running the logarithmic grid search has a complexity (log2N)2 times higher than running
N iterations in the optimal scheme.

8

Proof Denote N ′ =
∑R

k=1 tk ≥ N the number of iterations of a scheme Si,j . We necessarily
have N ′ ≤ 2N for our choice of Ci and τj . Hence the cost of running all methods is of the order
(log2N)2.

If τ = 0 and N ≥ 2C∗κ,0, we have i = dlog2C
∗
κ,0e ≤ blog2Nc. Therefore Si,0 has been run

and we can use bound (11) to show that the last iterate x̂ satisfies

f(x̂)− f∗ ≤
(
cκ

C2
i

) N
Ci

(f(x0)− f∗).

Using that C∗κ,0 ≤ Ci ≤ 2C∗κ,0, we get

f(x̂)− f∗ ≤

(
cκ

(C∗κ,0)
2

) N
2C∗
κ,0

(f(x0)− f∗)

≤ exp
(
−e−1(cκ)−

1
2N
)

(f(x0)− f∗).

If τ ≥ 1
N and N ≥ 2C∗κ,τ , we have j = d− log2 τe ≤ dlog2Ne and i = dlog2C

∗
κ,τe ≤

blog2Nc. Therefore scheme Si,j has been run. As Ci ≥ C∗κ,τ ≥ C(τj), where C(τj) is defined
in (13), we can use bound (12) to show that the last iterate x̂ of scheme Si,j satisfies

f(x̂)− f∗ ≤ f(x0)− f∗(
τje−τjC

−1
i N + 1

) 2
τ

.

Finally, by definition of i and j, 2τj ≥ τ and Ci ≤ 2C∗κ,τ , so

f(x̂)− f∗ ≤ f(x0)− f∗(
τe−τj (C∗κ,τ)−1N/4 + 1

) 2
τ

=
f(x0)− f∗(

τe−1(cκ)−
1
2 (f(x0)− f∗)

τ
2N/4 + 1

) 2
τ

,

where we concluded by expanding C∗κ,τ = e1−τ (cκ)
1
2 (f(x0)− f∗)−

τ
2 and using that τ ≥ τj .

If 1
N > τ > 0 and N > 2C∗κ,τ , we have i = dlog2C

∗
κ,τe ≤ blog2Nc, so scheme Si,0 has been

run. Its iterates xk satisfy, with 1− τ = 2/r,

f(xk)− f∗ ≤
cκ

C2
i

(f(xk−1)− f∗)
2
r

≤
(
cκ

C2
i

)(1−(1−τ)k)/τ
(f(x0)− f∗)(1−τ)

k

≤
(
cκ(f(x0)− f∗)−τ

C2
i

)(1−(1−τ)k)/τ
(f(x0)− f∗).

Now Ci ≥ C∗κ,τ = e1−τ (cκ)
1
2 (f(x0)− f∗)−

τ
2 and CiR ≥ N , therefore last iterate x̂ satisfies

f(x̂)− f∗ ≤ exp

(
−2(1− τ)

1− (1− τ)N/Ci

τ

)
(f(x0)− f∗).

9

As N ≥ Ci, since

h(τ) =
(1− τ)

(
1− (1− τ)

N
Ci

)
1− (1− τ)

is decreasing with τ and 1
N > τ > 0, we have

f(x̂)− f∗ ≤ exp

(
−2(N − 1)

(
1−

(
1− 1

N

)N/Ci))
(f(x0)− f∗)

≤ exp

(
−2(N − 1)

(
1− exp

(
− 1

Ci

)))
(f(x0)− f∗)

≤ exp

(
−2

N − 1

Ci

(
1− 1

2Ci

))
(f(x0)− f∗).

having used the facts that (1 + ax)
b
x ≤ exp(ab) if ax ≥ −1, b

x ≥ 0 and 1 − x + x2

2 ≥ exp(−x)
when x ≥ 0. By assumption C∗κ,τ ≥ 1, so Ci ≥ 1 and finally

f(x̂)− f∗ ≤ exp

(
−N − 1

Ci

)
(f(x0)− f∗)

≤ exp

(
−N − 1

2C∗κ,τ

)
(f(x0)− f∗)

≤ f(x0)− f∗(
τ(C∗κ,τ)−1(N − 1)/4 + 1

) 2
τ

≤ f(x0)− f∗(
τ(f(x0)− f∗)

τ
2 e−1(cκ)−

1
2 (N − 1)/4 + 1

) 2
τ

.

using the fact that eτ ≥ 1.

As showed in Corrolary 2.3, scheduled restart schemes are theoretically efficient only if the algo-
rithm itself makes a sufficient number of iterations to decrease the objective value. Therefore we
need N large enough to ensure the efficiency of the adaptive method. If τ = 0, we naturally have
C∗κ,0 ≥ 1, therefore if 1

N > τ > 0 and N is large, assuming C∗κ,τ ≈ C∗κ,0, we get C∗κ,τ ≥ 1. Conver-
gence of this adaptive method is similar to the one of Nesterov (2003) to optimize smooth strongly
convex functions in the sense that we lose approximately a log factor of the condition number of
the function. However our assumptions are weaker and we are able to tackle all regimes of the
sharpness property, i.e. any exponent r ∈ [2,+∞]. We end this section by analyzing the behavior
of gradient descent in light of the sharpness assumption.

2.3 Comparison to gradient descent

Given only the smoothness hypothesis, the gradient descent algorithm, recalled in section B.3, starts
from a point x0 and outputs iterates xt = G(x0, t) such that

f(xt)− f∗ ≤
L

t
d(x0, X

∗)2,

10

While accelerated methods use the last two iterates to compute the next one, simple gradient descent
algorithm uses only the last iterate, so the algorithm can be seen as (implicitly) restarting at each
iteration. Its convergence can therefore be written for k ≥ 1,

f(xk+t)− f∗ ≤
L

t
d(xk, X

∗)2. (15)

and we analyze it in light of the restart interpretation using the sharpness property in the following
theorem.

Theorem 2.5 Let f be a smooth convex function with parameter L satisfying (Smooth) and x0 ∈
Rn. Assume that f satisfies the sharpness property (Sharp) with parameters (r, µ) on a set K, such
that {x, f(x) ≤ f(x0)} ⊂ K. We write xt = G(x0, t) the iterate sequence generated by the
gradient descent algorithm started at x0 to solve (P). Define

tk = e1−τκ(f(x0)− f∗)τeτk.

The precision reached after N =
∑n

k=1 tk iterations is given by

f(xN)− f∗ ≤ exp
(
−e−1κ−1N

)
(f(x0)− f∗), if τ = 0

while

f(xN)− f∗ ≤ f(x0)− f∗

(τe−1κ−1(f(x0)− f∗)τN + 1)
1
τ

, if τ > 0.

Proof For a given γ ≥ 0, we construct a subsequence xφ(k) of xt such that

f(xφ(k))− f∗ ≤ e−γk(f(x0)− f∗). (16)

We define xφ(0) = x0. Assume that (16) is true at iteration k − 1, then combining complexity
bound (15) and sharpness (Sharp), for any t ≥ 1,

f(xφ(k−1)+t)− f∗ ≤
κ

t
(f(xφ(k−1))− f∗)

2
r

≤ κ

t
e−γ

2
r
(k−1)(f(x0)− f∗)

2
r .

Taking tk = eγ(1−τ)κ(f(x0) − f∗)−τeγτk and φ(k) = φ(k − 1) + tk, (16) holds at iteration k.
Using Lemma 3.1, we obtain at iteration N = φ(n) =

∑n
k=1 tk,

f(xN)− f∗ ≤ exp
(
−γe−γκ−1N

)
(f(x0)− f∗), if τ = 0,

and

f(xN)− f∗ ≤ f(x0)− f∗

(τγe−γκ−1(f(x0)− f∗)τN + 1)
1
τ

, if τ > 0.

These bounds are minimal for γ = 1 and the results follow.

We observe that restarting accelerated gradient methods reduces complexity from O(1/ετ) to
O(1/ετ/2) compared to simple gradient descent. This result is similar to the acceleration of gra-
dient descent. We extend now this restart scheme to solve non-smooth or Hölder smooth convex
optimization problem under the sharpness assumption.

11

3. Scheduled Restarts for Hölder smooth convex functions

In this section we seek to solve (P) assuming that the function f has a Hölder smooth gradient, i.e.
satisfies (Smooth) with s ∈ [1, 2] and L > 0 on a set J ⊂ Rn. If the function is non smooth, it
satisfies (Smooth) with s = 1 and L taken as the maximum norm of subgradients on J . Without
further assumptions on f , the optimal algorithm to solve the convex optimization problem (P) is
the universal fast gradient method (Nesterov, 2015). Given a target accuracy ε, the universal fast
gradient method starts at a point x0 and outputs after t iterations a point y , U(x0, ε, t), such that

f(y)− f∗ ≤ ε

2
+
cL

2
s d(x0, X

∗)2

ε
2
s t

2q
s

ε

2
, (17)

where c is a constant (c = 2
4s−2
s) and

q ,
3s− 2

2
(18)

is the optimal rate of convergence for s-smooth functions. More details about the universal fast
gradient method are given in Appendix B.1.

We will again assume that f is sharp with parameters (r, µ) on a set K ⊇ X∗, i.e.

µd(x,X∗)r ≤ f(x)− f∗, for every x ∈ K.

As mentioned in Section 1.2, if r > s, smoothness or sharpness are local properties, i.e. either J or
K or both are bounded, our analysis is therefore local. In the following we assume for simplicity,
given an initial point x0, that smoothness and sharpness are satisfied simultaneously on the sublevel
set {x, f(x) ≤ f(x0)}. The key difference with the smooth case described in the previous section is
that here we schedule both the target accuracy εk used by the algorithm and the number of iterations
tk made before the kth restart. Our scheme is described in Algorithm H-RESTART.

Algorithm 2 General Scheduled restarts for convex minimisation (H-RESTART)
Inputs : x0 ∈ Rn, ε0 ≥ f(x0)− f∗, γ ≥ 0 and a sequence tk for k = 1, . . . , R.
for k = 1, . . . , R do

εk := e−γεk−1
xk := U(xk−1, εk, tk)

(H-RESTART)

end for
Output : x̂ := xR

Our strategy is to choose a sequence tk that ensures

f(xk)− f∗ ≤ εk,

for the geometrically decreasing sequence εk. The overall complexity of our method will then
depend on the growth of tk as described in Lemma 2.1.

Proposition 3.1 Let f be a convex function satisfying (Smooth) with parameter (s, L) on a set J
and (Sharp) with parameters (r, µ) on a set K. Given x0 ∈ Rn assume that {x, f(x) ≤ f(x0)} ⊂

12

J ∩ K. We write xk the sequence generated by the (H-RESTART) scheme to solve (P) for given
ε0 ≥ f(x0)− f∗, γ = q and tk = C∗κ,τ,qe

τk, where

C∗κ,τ,q , e1−τ (cκ)
s
2q ε
− τ
q

0

and κ and τ are defined in (2) and (3) respectively. The precision reached at the last point x̂ is given
by, when τ = 0,

f(x̂)− f∗ ≤ exp
(
−qe−1(cκ)

− s
2qN

)
ε0 (19)

= O
(

exp(−κ−
s
2qN)

)
,

while, when τ > 0,

f(x̂)− f∗ ≤ ε0(
τe−1(cκ)

− s
2q ε

τ
q

0 N + 1

) q
τ

(20)

= O
(
κ
s
2τN−

q
τ

)
,

where N =
∑R

k=1 tk is total number of iterations.

Proof Our goal is to ensure that the target accuracy is reached at each restart, i.e.

f(xk)− f∗ ≤ εk. (21)

By assumption, (21) holds for k = 0. Assume that (21) is true at iteration k− 1, combining (Sharp)
with the complexity bound in (17), we get

f(xk)− f∗ ≤
εk
2

+
cκ(f(xk−1)− f∗)

2
r

ε
2
s
k t

2q
s
k

εk
2

≤ εk
2

+
cκ

t
2q
s
k

ε
2
r
k−1

ε
2
s
k

εk
2
.

By definition εk = e−γkε0 so to ensure (21) at iteration k we impose

cκeγ
2
r e−γ(

2
r
− 2
s)k

t
2q
s
k

ε
2
r
− 2
s

0 ≤ 1

Rearranging terms in last inequality, using τ defined in (3), we get

tk ≥ eγ
1−τ
q (cκ)

s
2q ε
− τ
q

0 e
γτ
q
k
.

Choosing tk = Ceαk, where

C = e
γ 1−τ

q (cκ)
s
2q ε
− τ
q

0

α =
γτ

q
,

13

and using Lemma 2.1 we get, if τ = 0,

f(x̂)− f∗ ≤ exp(−γe−
γ
q (cκ)

− s
2qN)ε0, (22)

while, if τ > 0,
f(x̂)− f∗ ≤ ε0(

γτ
q e
− γ
q (cκ)

− s
2q ε

τ
q

0 N + 1

) q
τ

. (23)

These bounds are minimal for γ = q and the results follow.

We chose γ = q here, however the choice of γ does not affect much bounds (22) and (23) if C
and α are chosen accordingly. This matches the lower bounds for optimizing smooth and sharp
functions functions (Nemirovskii and Nesterov, 1985, Page 6) up to constant factors. The rate of
convergence of this method is controlled by the ratio between τ and q. If these are not known, a
log-scale grid search won’t be able to reach the optimal rate, even if q is known since we will miss
the optimal schedule by a constant factor. If both are known, in the case of non-smooth strongly
convex functions for example, a grid-search on C recovers the optimal bound. Now we will see that
if f∗ is known, restart produces adaptive optimal rates.

4. Restart with termination criterion

In this section we assume that we know the optimum f∗ of the problem (P), or have an exact
termination criterion. This is the case for example in zero-sum matrix games problems or projections
on convex sets. We assume again that f satisfies (Smooth) with parameters (s, L) on a set J and
(Sharp) with parameters (r, µ) on a set K. Given an initial point x0 we assume that smoothness and
sharpness are satisfied simultaneously on the sublevel set {x, f(x) ≤ f(x0)}. We use again the
universal gradient method U . However here as we know the optimum f∗, we can stop the algorithm
when it reaches the target accuracy, i.e. after tε inner iterations such that y = U(x0, ε, tε) satisfies

f(y)− f∗ ≤ ε.

We write y , C(x0, ε) the output of this method.
Here we simply restart this method and decrease the target accuracy by a constant factor after

each restart. Our scheme is described in Algorithm ε-RESTART.

Algorithm 3 Restart on criterion (ε-RESTART)
Inputs : x0 ∈ Rn, f∗, γ ≥ 0
Initialize : ε0 = f(x0)− f∗
for k = 1, . . . , R do

εk := e−γεk−1
xk := C(xk−1, εk)

(ε-RESTART)

end for
Output : x̂ := xR

The following result describes the convergence of this method.

14

Proposition 4.1 Let f be a convex function satisfying (Smooth) with parameter (s, L) on a set J
and (Sharp) with parameters (r, µ) on a set K. Given x0 ∈ Rn assume that {x, f(x) ≤ f(x0)} ⊂
J∩K. We write xk the sequence generated by the (ε-RESTART) scheme to solve (P) with parameter
γ = q. The precision reached at the point x̂ is given by, when τ = 0,

f(x̂)− f∗ ≤ exp
(
−qe−1(cκ)

− s
2qN

)
(f(x0)− f∗)

= O
(
κ
s
2τN−

q
τ

)
,

while, when τ > 0,

f(x̂)− f∗ ≤ f(x0)− f∗(
τe−1(cκ)

− s
2q (f(x0)− f∗)

τ
qN + 1

) q
τ

= O
(
κ
s
2τN−

q
τ

)
,

where N =
∑R

k=1 tk is the total number of iterations.

Proof Given γ ≥ 0, linear convergence of our scheme is ensured by our choice of target accuracies
εk. It remains to compute the number of iterations tεk needed by the algorithm before the kth restart.
Following proof of Proposition 3.1, for k ≥ 1 we know that target accuracy is necessarily reached
after

t̄k = e
γ 1−τ

q (cκ)
s
2q ε
− τ
q

0 e
γτ
q
k

iterations, such that tεk ≤ t̄k. So (ε-RESTART) scheme achieves linear convergence while needing
less inner iterates than the scheduled restart presented in Proposition 3.1. Its convergence is there-
fore at least as good. Here ε0 = f(x0) − f∗ as we know the optimum. We choose γ = q as it is
the optimal choice derived before however bounds (22) and (23) are also valid here for any choice
of γ ≥ 0.

Therefore if f∗ is known, this method is adaptive, contrary to the general case in Proposition 3.1.
It can even adapt to the local values of L or µ as we use a criterion instead of a prefixed schedule.
As stated in Section 3 the choice of γ does not impact much bounds (22) and (23), so running this
scheme with γ = 1 makes it parameter-free while getting nearly optimal bounds.

5. Numerical Results

We test our adaptive restart method, denoted Adap, on several problems and compare it against
simple gradient descent, accelerated gradient method, and restart heuristic enforcing monotonicity
(O’Donoghue and Candes, 2015), denoted by respectively Grad, Acc and Mono. We plot the conver-
gence of the best method found by grid search to compare with the restart heuristic. This implicitly
assumes that the grid search is run in parallel with enough servers. Large dots represent the restart
iterations. The paper focuses solely on unconstrained problem of the form (P) but our approach
can directly be extended to composite problems by using the proximal variant of the gradient, ac-
celerated and universal fast gradient methods as in (Nesterov, 2007). This includes constrained by
considering the composite problem composed by the function and the indicator function of the set.

15

Our goal here is to go from the theoretical assumption of sharpness that relies on topological
arguments to practical problems in order to check the relevance of this assumption. If the function
is sharp our restart scheme will necessarily exploit the property with nearly optimal theoretical rate
whereas gradient or accelerated methods will not. In that sense we do not claim that our approach
leads to state of the art results but it may pave the way to new approaches that would use the
sharpness assumption.

In Figure 1, we solve classification problems with various losses on the UCI Sonar and Madelon
data sets (Asuncion and Newman, 2007) with (n, d) = (208, 60) and (2000, 500) respectively, the
latter being poorly conditioned. For least square loss on sonar data set, we observe much faster
convergence of the restart schemes compared to the accelerated method. These results were already
observed by O’Donoghue and Candes (2015). On the Madelon data set we observe that restart
heuristics are faster but scheduled restart compare favorably while not getting stuck in a restart
loop like the restart with heuristic. For logistic loss, we observe that restart does not provide much
improvement. Smoothness of the loss may explain this behavior. For hinge loss, we regularized
by a squared norm and optimize the dual. This amounts to solve a quadratic problem with box
constraints. We observe here that the scheduled restart scheme offer much faster convergence, while
restart heuristics may be activated too late to offer the fast convergence possible with the sharpness
assumption. For the least squares penalized by a `1 norm a.k.a. the LASSO problem, we observe
similar results than for the dual SVM problem which had constraints. This highlights the benefits
of a sharpness assumption for these two problems and precisely quantifying this sharpness from the
data structure is an interesting open problem. Regularization parameters for dual SVM and LASSO
were set to one.

16

0 200 400 600 800

Number of iterations

10 -10

10 -5

10 0

f(
x
)-

f
*

Grad

Acc

Mono

Adap

0 5 10

Number of iterations ×10 4

10 -8

10 -6

10 -4

10 -2

10 0

f(
x
)-

f
*

Grad

Acc

Mono

Adap

0 2000 4000 6000

Number of iterations

10 -6

10 -4

10 -2

10 0

f(
x
)-

f
*

Grad

Acc

Mono

Adap

0 5 10

Number of iterations ×10 4

10 -6

10 -4

10 -2

10 0

f(
x
)-

f
*

Grad

Acc

Mono

Adap

0 1000 2000 3000

Number of iterations

10 -10

10 -5

10 0

f(
x
)-

f
*

Grad

Acc

Mono

Adap

0 5 10

Number of iterations ×10 4

0.2

0.4

0.6

0.8

1

f(
x
)-

f
*

Grad

Acc

Mono

Adap

0 1000 2000 3000 4000

Number of iterations

10 -10

10 -5

10 0

f(
x
)-

f
*

Grad

Acc

Mono

Adap

0 5 10

Number of iterations ×10 4

10 -8

10 -6

10 -4

10 -2

10 0

f(
x
)-

f
*

Grad

Acc

Mono

Adap

Figure 1: Sonar (left) and Madelon (right) data sets. From top to bottom: least square loss, logistic
loss, dual SVM problem and LASSO. We use adaptive restarts (Adap), gradient descent
(Grad), accelerated gradient (Acc) and restart heuristic enforcing monotonicity (Mono).
Large dots represent the restart iterations

17

References

Arthur Asuncion and David Newman. Uci machine learning repository, 2007.

Hédy Attouch, Jérôme Bolte, Patrick Redont, and Antoine Soubeyran. Proximal alternating mini-
mization and projection methods for nonconvex problems: An approach based on the kurdyka-
łojasiewicz inequality. Mathematics of Operations Research, 35(2):438–457, 2010.

Edward Bierstone and Pierre D Milman. Semianalytic and subanalytic sets. Publications
Mathématiques de l’IHÉS, 67:5–42, 1988.

Jérôme Bolte, Aris Daniilidis, and Adrian Lewis. The lojasiewicz inequality for nonsmooth suban-
alytic functions with applications to subgradient dynamical systems. SIAM Journal on Optimiza-
tion, 17(4):1205–1223, 2007.

J. Burke, A. Lewis, and M. Overton. Approximating Subdifferentials by Random Sampling of
Gradients. Mathematics of Operations Research, 27(3):567–584, 2002.

Olivier Fercoq and Zheng Qu. Restarting accelerated gradient methods with a rough strong convex-
ity estimate. arXiv preprint arXiv:1609.07358, 2016.

Pierre Frankel, Guillaume Garrigos, and Juan Peypouquet. Splitting methods with variable metric
for kl functions. arXiv preprint arXiv:1405.1357, 2014.

Andrew Gilpin, Javier Pena, and Tuomas Sandholm. First-order algorithm withO(log 1/ε) conver-
gence for ε-equilibrium in two-person zero-sum games. Mathematical programming, 133(1-2):
279–298, 2012.

Pontus Giselsson and Stephen Boyd. Monotonicity and restart in fast gradient methods. In 53rd
IEEE Conference on Decision and Control, pages 5058–5063. IEEE, 2014.

Anatoli Iouditski and Yuri Nesterov. Primal-dual subgradient methods for minimizing uniformly
convex functions. arXiv preprint arXiv:1401.1792, 2014.

Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-
gradient methods under the polyak-łojasiewicz condition. In Joint European Conference on Ma-
chine Learning and Knowledge Discovery in Databases, pages 795–811. Springer, 2016.

Krzysztof Kurdyka. On gradients of functions definable in o-minimal structures. In Annales de
l’institut Fourier, volume 48, pages 769–783, 1998.

Stanislas Lojasiewicz. Sur la géométrie semi-et sous-analytique. Annales de l’institut Fourier, 43
(5):1575–1595, 1993.

Stanislaw Lojasiewicz. Une propriété topologique des sous-ensembles analytiques réels. Les
équations aux dérivées partielles, pages 87–89, 1963.

AS Nemirovskii and Yu E Nesterov. Optimal methods of smooth convex minimization. USSR
Computational Mathematics and Mathematical Physics, 25(2):21–30, 1985.

18

Y. Nesterov. A method of solving a convex programming problem with convergence rate O(1/k2).
Soviet Mathematics Doklady, 27(2):372–376, 1983.

Y. Nesterov. Introductory Lectures on Convex Optimization. Springer, 2003.

Y. Nesterov. Gradient methods for minimizing composite objective function. CORE DP2007/96,
2007.

Yu Nesterov. Universal gradient methods for convex optimization problems. Mathematical Pro-
gramming, 152(1-2):381–404, 2015.

Brendan O’Donoghue and Emmanuel Candes. Adaptive restart for accelerated gradient schemes.
Foundations of computational mathematics, 15(3):715–732, 2015.

Boris Teodorovich Polyak. Gradient methods for minimizing functionals. Zhurnal Vychislitel’noi
Matematiki i Matematicheskoi Fiziki, 3(4):643–653, 1963.

Vincent Roulet, Nicolas Boumal, and Alexandre d’Aspremont. Renegar’s condition number and
compressed sensing performance. arXiv preprint arXiv:1506.03295, 2015.

Weijie Su, Stephen Boyd, and Emmanuel Candes. A differential equation for modeling nesterov’s
accelerated gradient method: Theory and insights. In Advances in Neural Information Processing
Systems, pages 2510–2518, 2014.

Acknowledgements

AA is at CNRS, attached to the Département d’Informatique at École Normale Supérieure in Paris,
INRIA-Sierra team, PSL Research University. The authors would like to acknowledge support from
a starting grant from the European Research Council (ERC project SIPA), as well as support from
the chaire Économie des nouvelles données with the data science joint research initiative with the
fonds AXA pour la recherche.

19

Appendix A. Łojasevicz’s inequality

In this section we present a simple proof of Łojasievicz inequality for real analytic functions in
dimension one to give an intuition of its origin. We then provide definitions of subanalytic functions
that also satisfies Łojasievicz inequality and invite the reader to read the given references for more
details.

A.1 Łojasevicz inequality for univariate functions

To fix ideas and illustrate the result, we present a simple proof of Łojasievicz’s inequality for real-
analytic functions in dimension one.

Theorem A.1 Łojasewicz inequality (Lojasiewicz, 1963, 1993) shows that if a function f : dom f ⊂
R → R is analytic then for every compact set K ⊂ dom f there exists r > 0 and µ > 0 such that
for every x ∈ K,

µd(x,X∗)r ≤ f(x)− f∗ (24)

Equivalently if x∗ is a critical point of f , i.e. ∇f(x∗) = 0, then there is θ ∈ [0, 1[such that

|f(x)− f(x∗)|θ

‖∇f(x)‖
(25)

is bounded in a neighborhood of x∗ and compared to (24), θ = 1− 1/r.

Proof Let us write the series expansion of f as

f(x)− f(y) =
∞∑
k=q

f (k)(y)

k!
(x− y)k

where q ≥ 0 is the smallest coefficient for which f (q)(y) 6= 0. There is an interval V around y such
that

1

2

f (q)(y)

q!
|x− y|q ≤ |f(x)− f(y)| ≤ 2

f (q)(y)

q!
|x− y|q

Setting y = x∗ the point in X∗ reaching d(x,X∗), this yields inequality (24) with r = q. Assuming
f ′(y) = 0 (hence q ≥ 2), and applying the bound above to the function f ′(x), we also get

1

2

f (q)(y)

(q − 1)!
|y − x|q−1 ≤ |f ′(x)|

which together with the inequality on |f(x)− f(y)| yields

1

2

(
q!

2

) q−1
q f (q)(x)

1
q

(q − 1)!
|f(x)− f(y)|1−

1
q ≤ |f ′(y)|

which is exactly (25) with θ = 1− 1/q in a neighborhood V ′ of x.

20

A.2 Subanalytic functions

We recall here the definition of a subanalytic functions and the results derived by Bolte et al. (2007).
We first define semianalytic sets.

Definition A.2 A subset A ⊂ Rn is called semianalytic iff for each point there is a neighborhood
V such that A ∩ V can be represented as

A ∩ V =

p⋃
i=1

p⋂
j=1

{x ∈ V : fij(x) = 0, gij(x) < 0}

where the function fij and gij : V → R are real analytic.

We then define subanalytic sets, as projections of semianalytic sets.

Definition A.3 A subset A ⊂ Rn is called subanalytic iff for each point there is a neighborhood V
such that A ∩ V can be represented as

A ∩ V = {x ∈ Rn : (x, y) ∈ B}

where B ⊂ Rn × Rm is semianalytic.

Finally, a function is said to be subanalytic iff its graph is subanalytic.

Definition A.4 A function f : Rn → R ∪ {∞} is called subanalytic if and only if its graph is a
subanalytic subset of Rn × R.

Łojasievicz inequality is then also satisfied by lower semi-continuous subanalytic convex functions.

Theorem A.5 Let f : Rn → R ∪ {∞} be a lower semicontinuous convex subanalytic function
whose set X∗ of critical points is nonempty. For any bounded set K, there is an exponent r > 1
and a constant µ > 0 such that

µd(x,X∗)r ≤ f(x)− f∗.

This last result shows that the sharpness assumption holds for a very broad class of functions.

Appendix B. Algorithms & Complexity Bounds

We present here the classical algorithms for convex optimization that we restart. We present their
general form to solve composite optimization problems of the form

minimize f(x) , g(x) + h(x) (Composite)

where g, h are convex functions defined on Rn and h is assumed simple in the sense that, given
M ≥ 0, its proximal operator

proxh,M (x) = argmin
x

1

2
‖z − x‖2 +Mh(z)

is easily computable, either in a closed form or by some cheap computational procedure. For exam-
ple h can be the `1 norm in the LASSO problem or the indicator function of a box in the dual SVM
problem.

21

B.1 Universal fast gradient method

Here, we assume that ∇g is Hölder continuous, i.e. that there are constants s ≥ 1 and L > 0 such
that

‖∇g(x)−∇g(y)‖ ≤ L‖x− y‖s−1, (Hölder Smooth)

for every x, y ∈ Rn. The optimal algorithm to solve the (Composite) problem is then the universal
fast gradient method (Nesterov, 2015). It is detailed in Algorithm 4. Given a target accuracy ε, it
starts at a point x0 and outputs after t iterations a point y , U(x0, ε, t), such that

f(y)− f∗ ≤ ε

2
+
cL

2
s d(x0, X

∗)2

ε
2
s t

2q
s

ε

2
,

where c is a constant (c = 2
4s−2
s) and

q ,
3s− 2

2
is the optimal rate of convergence for s-smooth functions. The method does not need to know the
smoothness parameters (s, L), but the target accuracy ε is used to parametrize the algorithm.

The universal fast gradient method requires an estimate L0 of the smoothness parameter L to
start a line search on L. This line search is proven to increase the complexity of the algorithm by
at most a constant factor plus a logarithmic term and ensures that the overall complexity does not
depend on L0 but on L. In our restart schemes we use a first estimate L0 when running the algorithm
for the first time and we use the last estimate found by the algorithm when restarting it.

Finally ifX∗ 6= ∅, the universal fast gradient method produces a convergent sequence of iterates.
Therefore if the Łojasievicz inequality is satisfied on a compact set K, it will be valid for all our
iterates after perhaps reducing µ.

B.2 Accelerated gradient method

The accelerated gradient method is a special instance of the universal fast gradient method when
the function g is known to be smooth (i.e. satisfies (Hölder Smooth) with s = 1). In that case
the optimal ε to run the Universal Fast Gradient method is 0 (otherwise it requires to know the
parameters of the function). Given an initial point x0, accelerated gradient method outputs, after t
iterations, a point yt denoted y , A(x0, t) = U(x0, 0, t) such that

f(y)− f∗ ≤ cL

t2
d(x0, X

∗)2,

where c = 4. Here again smoothness parameter L is found by a backtracking line search such that
we only need a first estimate of its value.

B.3 Gradient descent method

We recall in Algorithm 5 the simple gradient descent method when the function g is smooth with
constant L. It starts at point x0 and outputs iterates xt = G(x0, t) such that

f(xt)− f∗ ≤
L

t
d(x0, X

∗)2,

Once again it performs a line search on the smoothness parameter L such that L0 can be chosen
arbitrarily.

22

Algorithm 4 Universal fast gradient method
Inputs : x0, L0, ε
Initialize : φ0(x) := 1

2‖x0 − x‖
2
2, y0 := x0, A0 := 0, L̂ := L0

for t = 0, . . . , T do

zt := proxh,A

(
x0 −

t∑
i=1

ai∇f(xi)

)

repeat
Find a ≥ 0, such that

a2 =
1

L̂
(At + a)

Choose

τ :=
a

At + a

x := τzt + (1− τ)yt

y := τproxh,a (zt − a∇f(x))− (1− τ)yt

if f(y) ≥ f(x) + 〈∇f(x), y − x〉+ L̂
2 ‖y − x‖

2
2 + τε

2 then L̂ := 2L̂ end if

until f(y) ≤ f(x) + 〈∇f(x), y − x〉+
ˆ̂
L
2 ‖y − x‖

2
2 + τε

2
Set

xt+1 := x, yt+1 := y, at+1 := a,

At+1 := At + at+1, L̂ := L̂/2,

end for
Output : y = yT

Appendix C. Rounding issues

We presented convergence bounds for real sequences of iterate counts (tk)
∞
k=1 but in practice these

are integer sequences. The following Lemma details the convergence of our schemes for an approx-
imate choice t̃k = dtke

Lemma C.1 Let xk be a sequence whose kth iterate is generated from previous one by an algorithm
that needs tk iterations and denote N =

∑R
k=1 tk the total number of iterations to output a point

x̂ = xR. Suppose setting
tk = dCeαke, k = 1, . . . , R

for some C > 0 and α ≥ 0 ensures that objective values f(xk) converge linearly, i.e.

f (xk)− f∗ ≤ νe−γk, (26)

23

Algorithm 5 Gradient descent method
Inputs : x0, L0

Initialize : L̂ := L0

for t = 0, . . . do
repeat

x := proxh,1/L̂
(
xt − 1

L̂
∇f(xt)

)
if f(x) ≥ f(xt) + 〈∇f(xt), x− xt〉+ L̂

2 ‖x− xt‖
2
2 then L̂ = 2L̂ end if

until f(x) ≤ f(xt) + 〈∇f(xt), x− xt〉+ L̂
2 ‖x− xt‖

2
2

Set
xt+1 := x, L̂ := L̂/2

end for

for all k ≥ 0 with ν ≥ 0 and γ ≥ 0. Then precision at the output is given by,

f(x̂)− f∗ ≤ ν exp(−γN/(C + 1)), when α = 0,

and
f(x̂)− f∗ ≤ ν

(αe−αC−1N + 1)
γ
α

, when α > 0,

where N ′ = N − log((eα−1)e−αC−1N+1)
α .

Proof At the Rth point generated, N =
∑R

k=1 tk. If tk = dCe, define ε = dCe − C such that
0 ≤ ε < 1. Then N = R(C + ε), injecting it in (26) at the Rth point, we get

f(x̂)− f∗ ≤ νe−γ
N
C+ε ≤ νe−γ

N
C+1 .

On the other hand, if tk = dCeαke, define εk = dCeαke −Ceαk, such that 0 ≤ εk < 1. On one
hand

N ≥
R∑
k=1

Ceαk,

such that

R ≤
log
(
(eα − 1)e−αC−1N + 1

)
α

.

On the other hand,

N =
R∑
k=1

tk =
Ceα

eα − 1
(eαR − 1) +

R∑
k=1

εk

≤ Ceα

eα − 1
(eαR − 1) +R

≤ Ceα

eα − 1
(eαR − 1) +

log
(
(eα − 1)e−αC−1N + 1

)
α

,

24

such that

R ≥
log
(
αe−αC−1N ′ + 1

)
α

.

Injecting it in (26) at the Rth point we get the result.

25

	Sharpness
	The Łojasevicz Inequality
	Sharpness and smoothness
	Scheduled restarts for smooth convex problems
	Scheduled restarts
	Adaptive scheduled restart
	Comparison to gradient descent
	Scheduled Restarts for Hölder smooth convex functions
	Restart with termination criterion
	Numerical Results

	Łojasevicz's inequality
	Łojasevicz inequality for univariate functions
	Subanalytic functions
	Algorithms & Complexity Bounds
	Universal fast gradient method
	Accelerated gradient method
	Gradient descent method
	Rounding issues

