6,802 research outputs found

    Program representation size in an intermediate language with intersection and union types

    Full text link
    The CIL compiler for core Standard ML compiles whole programs using a novel typed intermediate language (TIL) with intersection and union types and flow labels on both terms and types. The CIL term representation duplicates portions of the program where intersection types are introduced and union types are eliminated. This duplication makes it easier to represent type information and to introduce customized data representations. However, duplication incurs compile-time space costs that are potentially much greater than are incurred in TILs employing type-level abstraction or quantification. In this paper, we present empirical data on the compile-time space costs of using CIL as an intermediate language. The data shows that these costs can be made tractable by using sufficiently fine-grained flow analyses together with standard hash-consing techniques. The data also suggests that non-duplicating formulations of intersection (and union) types would not achieve significantly better space complexity.National Science Foundation (CCR-9417382, CISE/CCR ESS 9806747); Sun grant (EDUD-7826-990410-US); Faculty Fellowship of the Carroll School of Management, Boston College; U.K. Engineering and Physical Sciences Research Council (GR/L 36963, GR/L 15685

    Acute: high-level programming language design for distributed computation

    No full text
    Existing languages provide good support for typeful programming of standalone programs. In a distributed system, however, there may be interaction between multiple instances of many distinct programs, sharing some (but not necessarily all) of their module structure, and with some instances rebuilt with new versions of certain modules as time goes on. In this paper we discuss programming language support for such systems, focussing on their typing and naming issues. We describe an experimental language, Acute, which extends an ML core to support distributed development, deployment, and execution, allowing type-safe interaction between separately-built programs. The main features are: (1) type-safe marshalling of arbitrary values; (2) type names that are generated (freshly and by hashing) to ensure that type equality tests suffice to protect the invariants of abstract types, across the entire distributed system; (3) expression-level names generated to ensure that name equality tests suffice for type-safety of associated values, e.g. values carried on named channels; (4) controlled dynamic rebinding of marshalled values to local resources; and (5) thunkification of threads and mutexes to support computation mobility. These features are a large part of what is needed for typeful distributed programming. They are a relatively lightweight extension of ML, should be efficiently implementable, and are expressive enough to enable a wide variety of distributed infrastructure layers to be written as simple library code above the byte-string network and persistent store APIs. This disentangles the language runtime from communication intricacies. This paper highlights the main design choices in Acute. It is supported by a full language definition (of typing, compilation, and operational semantics), by a prototype implementation, and by example distribution libraries

    A formal support to business and architectural design for service-oriented systems

    Get PDF
    Architectural Design Rewriting (ADR) is an approach for the design of software architectures developed within Sensoria by reconciling graph transformation and process calculi techniques. The key feature that makes ADR a suitable and expressive framework is the algebraic handling of structured graphs, which improves the support for specification, analysis and verification of service-oriented architectures and applications. We show how ADR is used as a formal ground for high-level modelling languages and approaches developed within Sensoria

    A study of systems implementation languages for the POCCNET system

    Get PDF
    The results are presented of a study of systems implementation languages for the Payload Operations Control Center Network (POCCNET). Criteria are developed for evaluating the languages, and fifteen existing languages are evaluated on the basis of these criteria

    Objective Caml on .NET: The OCamIL Compiler and Toplevel

    Get PDF
    International audienceWe present the OCamIL compiler for Objective Caml that targets .NET. Our experiment consists in adding a new back-end to the INRIA Objective Caml compiler, that generates MSIL bytecode. Among all the advantages of code reuse, ensuring compatibility while keeping all the expressiveness of the original language is particularly interesting. This allowed us to bootstrap the OCamIL compiler as a .NET component and build an interactive loop (toplevel) which may be embedded within .NET applications. This work deals with typing issues, because OCamIL needs to translate an untyped intermediate language into a typed bytecode. We discuss various intermediate language retyping techniques and their consequences on performances. We also present applications of interoperability of Objective Caml and C# components

    A practical module system for LF

    Full text link
    Module systems for proof assistants provide administrative support for large developments when mechanizing the meta-theory of programming languages and logics. In this paper we describe a module system for the logical framework LF. It is based on two main primitives: signatures and signature morphisms, which provide a semantically transparent module level and permit to represent logic translations as homomorphisms. Modular LF is a conservative extension over LF, and defines an elaboration of modular into core LF signatures. We have implemented our design in the Twelf system and used it to modularize large parts of the Twelf example library

    Type-safe Linking and Modular Assembly Language

    Get PDF
    Linking is a low-level task that is usually vaguely specified, if at all, by language definitions. However, the security of web browsers and other extensible systems depends crucially upon a set of checks that must be performed at link time. Building upon the simple, but elegant ideas of Cardelli, and module constructs from high-level languages, we present a formal model of typed object files and a set of inference rules that are sufficient to guarantee that type safety is preserved by the linking process. Whereas Cardelli's link calculus is built on top of the simply-typed lambda calculus, our object files are based upon typed assembly language so that we may model important low-level implementation issues. Furthermore, unlike Cardelli, we provide support for abstract types and higher-order type constructors - features critical for building extensible systems or modern programming languages such as ML.Engineering and Applied Science
    corecore