9 research outputs found

    Statistical comparisons of non-deterministic IR systems using two dimensional variance

    Get PDF
    Retrieval systems with non-deterministic output are widely used in information retrieval. Common examples include sampling, approximation algorithms, or interactive user input. The effectiveness of such systems differs not just for different topics, but also for different instances of the system. The inherent variance presents a dilemma - What is the best way to measure the effectiveness of a non-deterministic IR system? Existing approaches to IR evaluation do not consider this problem, or the potential impact on statistical significance. In this paper, we explore how such variance can affect system comparisons, and propose an evaluation framework and methodologies capable of doing this comparison. Using the context of distributed information retrieval as a case study for our investigation, we show that the approaches provide a consistent and reliable methodology to compare the effectiveness of a non-deterministic system with a deterministic or another non-deterministic system. In addition, we present a statistical best-practice that can be used to safely show how a non-deterministic IR system has equivalent effectiveness to another IR system, and how to avoid the common pitfall of misusing a lack of significance as a proof that two systems have equivalent effectiveness

    Modeling Temporal Evidence from External Collections

    Full text link
    Newsworthy events are broadcast through multiple mediums and prompt the crowds to produce comments on social media. In this paper, we propose to leverage on this behavioral dynamics to estimate the most relevant time periods for an event (i.e., query). Recent advances have shown how to improve the estimation of the temporal relevance of such topics. In this approach, we build on two major novelties. First, we mine temporal evidences from hundreds of external sources into topic-based external collections to improve the robustness of the detection of relevant time periods. Second, we propose a formal retrieval model that generalizes the use of the temporal dimension across different aspects of the retrieval process. In particular, we show that temporal evidence of external collections can be used to (i) infer a topic's temporal relevance, (ii) select the query expansion terms, and (iii) re-rank the final results for improved precision. Experiments with TREC Microblog collections show that the proposed time-aware retrieval model makes an effective and extensive use of the temporal dimension to improve search results over the most recent temporal models. Interestingly, we observe a strong correlation between precision and the temporal distribution of retrieved and relevant documents.Comment: To appear in WSDM 201

    A Vertical PRF Architecture for Microblog Search

    Full text link
    In microblog retrieval, query expansion can be essential to obtain good search results due to the short size of queries and posts. Since information in microblogs is highly dynamic, an up-to-date index coupled with pseudo-relevance feedback (PRF) with an external corpus has a higher chance of retrieving more relevant documents and improving ranking. In this paper, we focus on the research question:how can we reduce the query expansion computational cost while maintaining the same retrieval precision as standard PRF? Therefore, we propose to accelerate the query expansion step of pseudo-relevance feedback. The hypothesis is that using an expansion corpus organized into verticals for expanding the query, will lead to a more efficient query expansion process and improved retrieval effectiveness. Thus, the proposed query expansion method uses a distributed search architecture and resource selection algorithms to provide an efficient query expansion process. Experiments on the TREC Microblog datasets show that the proposed approach can match or outperform standard PRF in MAP and NDCG@30, with a computational cost that is three orders of magnitude lower.Comment: To appear in ICTIR 201

    Temporal Information Models for Real-Time Microblog Search

    Get PDF
    Real-time search in Twitter and other social media services is often biased towards the most recent results due to the “in the moment” nature of topic trends and their ephemeral relevance to users and media in general. However, “in the moment”, it is often difficult to look at all emerging topics and single-out the important ones from the rest of the social media chatter. This thesis proposes to leverage on external sources to estimate the duration and burstiness of live Twitter topics. It extends preliminary research where itwas shown that temporal re-ranking using external sources could indeed improve the accuracy of results. To further explore this topic we pursued three significant novel approaches: (1) multi-source information analysis that explores behavioral dynamics of users, such as Wikipedia live edits and page view streams, to detect topic trends and estimate the topic interest over time; (2) efficient methods for federated query expansion towards the improvement of query meaning; and (3) exploiting multiple sources towards the detection of temporal query intent. It differs from past approaches in the sense that it will work over real-time queries, leveraging on live user-generated content. This approach contrasts with previous methods that require an offline preprocessing step

    Evaluation with uncertainty

    Get PDF
    Experimental uncertainty arises as a consequence of: (1) bias (systematic error), and (2) variance in measurements. Popular evaluation techniques only account for the variance due to sampling of experimental units, and assume the other sources of uncertainty can be ignored. For example, only the uncertainty due to sampling of topics (queries) and sampling of training:test datasets is considered in standard information retrieval (IR) and classifier system evaluation respectively. However, incomplete relevance judgements, assessor disagreement, non-deterministic systems, and the measurement bias can also cause uncertainty in these experiments. In this thesis, the impact of other sources of uncertainty on evaluating IR and classification experiments are investigated. The uncertainty due to:(1) incomplete relevance judgements in IR test collections,(2) non-determinism in IR systems / classifiers, and (3) high variance of classifiers is analysed using case studies from distributed information retrieval and information security. The thesis illustrates the importance of reducing and accurately accounting for uncertainty when evaluating complex IR and classifier systems. Novel techniques to(1) reduce uncertainty due to test collection bias in IR evaluation and high classifier variance (overfitting) in detecting drive-by download attacks,(2) account for multidimensional variance due to sampling of IR systems instances from non-deterministic IR systems in addition to sampling of topics, and (3) account for repeated measurements due to non-deterministic classification algorithms are introduced

    Shard ranking and cutoff estimation for topically partitioned collections

    No full text
    Large document collections can be partitioned into topical shards to facilitate distributed search. In a low-resource search environment only a few of the shards can be searched in parallel. Such a search environment faces two intertwined challenges. First, determining which shards to consult for a given query: shard ranking. Second, how many shards to consult from the ranking: cutoff estimation. In this paper we present a family of three algorithms that address both of these problems. As a basis we employ a commonly used data structure, the central sample index (CSI), to represent the shard contents. Running a query against the CSI yields a flat document ranking that each of our algorithms transforms into a tree structure. A bottom up traversal of the tree is used to infer a ranking of shards and also to estimate a stopping point in this ranking that yields cost-effective selective distributed search. As compared to a state-of-the-art shard ranking approach the proposed algorithms provide substantially higher search efficiency while providing comparable search effectiveness

    Query routing in cooperative semi-structured peer-to-peer information retrieval networks

    Get PDF
    Conventional web search engines are centralised in that a single entity crawls and indexes the documents selected for future retrieval, and the relevance models used to determine which documents are relevant to a given user query. As a result, these search engines suffer from several technical drawbacks such as handling scale, timeliness and reliability, in addition to ethical concerns such as commercial manipulation and information censorship. Alleviating the need to rely entirely on a single entity, Peer-to-Peer (P2P) Information Retrieval (IR) has been proposed as a solution, as it distributes the functional components of a web search engine – from crawling and indexing documents, to query processing – across the network of users (or, peers) who use the search engine. This strategy for constructing an IR system poses several efficiency and effectiveness challenges which have been identified in past work. Accordingly, this thesis makes several contributions towards advancing the state of the art in P2P-IR effectiveness by improving the query processing and relevance scoring aspects of a P2P web search. Federated search systems are a form of distributed information retrieval model that route the user’s information need, formulated as a query, to distributed resources and merge the retrieved result lists into a final list. P2P-IR networks are one form of federated search in routing queries and merging result among participating peers. The query is propagated through disseminated nodes to hit the peers that are most likely to contain relevant documents, then the retrieved result lists are merged at different points along the path from the relevant peers to the query initializer (or namely, customer). However, query routing in P2P-IR networks is considered as one of the major challenges and critical part in P2P-IR networks; as the relevant peers might be lost in low-quality peer selection while executing the query routing, and inevitably lead to less effective retrieval results. This motivates this thesis to study and propose query routing techniques to improve retrieval quality in such networks. Cluster-based semi-structured P2P-IR networks exploit the cluster hypothesis to organise the peers into similar semantic clusters where each such semantic cluster is managed by super-peers. In this thesis, I construct three semi-structured P2P-IR models and examine their retrieval effectiveness. I also leverage the cluster centroids at the super-peer level as content representations gathered from cooperative peers to propose a query routing approach called Inverted PeerCluster Index (IPI) that simulates the conventional inverted index of the centralised corpus to organise the statistics of peers’ terms. The results show a competitive retrieval quality in comparison to baseline approaches. Furthermore, I study the applicability of using the conventional Information Retrieval models as peer selection approaches where each peer can be considered as a big document of documents. The experimental evaluation shows comparative and significant results and explains that document retrieval methods are very effective for peer selection that brings back the analogy between documents and peers. Additionally, Learning to Rank (LtR) algorithms are exploited to build a learned classifier for peer ranking at the super-peer level. The experiments show significant results with state-of-the-art resource selection methods and competitive results to corresponding classification-based approaches. Finally, I propose reputation-based query routing approaches that exploit the idea of providing feedback on a specific item in the social community networks and manage it for future decision-making. The system monitors users’ behaviours when they click or download documents from the final ranked list as implicit feedback and mines the given information to build a reputation-based data structure. The data structure is used to score peers and then rank them for query routing. I conduct a set of experiments to cover various scenarios including noisy feedback information (i.e, providing positive feedback on non-relevant documents) to examine the robustness of reputation-based approaches. The empirical evaluation shows significant results in almost all measurement metrics with approximate improvement more than 56% compared to baseline approaches. Thus, based on the results, if one were to choose one technique, reputation-based approaches are clearly the natural choices which also can be deployed on any P2P network
    corecore