70 research outputs found

    Advanced Process Planning for Subtractive Rapid Prototyping

    Get PDF
    This paper presents process planning methods for Subtractive Rapid Prototyping, which deals with multiple setup operations and the related issues of stock material management. Subtractive Rapid Prototyping (SRP) borrows from additive rapid prototyping technologies by using 2½D layer based toolpath processing; however, it is limited by tool accessibility. To counter the accessibility problem, SRP systems (such as desktop milling machines) employ a rotary fourth axis to provide more complete surface coverage. However, layer-based removal processing from different rotary positions can be inefficient due to double-coverage of certain volumes. This paper presents a method that employs STL models of the in-process stock material generated from slices of the part along the rotation axis. The developed algorithms intend to improve the efficiency and reliability of these multiple layer-based removal steps for rapid manufacturing.Mechanical Engineerin

    Optimized normal and distance matching for heterogeneous object modeling

    Get PDF
    This paper presents a new optimization methodology of material blending for heterogeneous object modeling by matching the material governing features for designing a heterogeneous object. The proposed method establishes point-to-point correspondence represented by a set of connecting lines between two material directrices. To blend the material features between the directrices, a heuristic optimization method developed with the objective is to maximize the sum of the inner products of the unit normals at the end points of the connecting lines and minimize the sum of the lengths of connecting lines. The geometric features with material information are matched to generate non-self-intersecting and non-twisted connecting surfaces. By subdividing the connecting lines into equal number of segments, a series of intermediate piecewise curves are generated to represent the material metamorphosis between the governing material features. Alternatively, a dynamic programming approach developed in our earlier work is presented for comparison purposes. Result and computational efficiency of the proposed heuristic method is also compared with earlier techniques in the literature. Computer interface implementation and illustrative examples are also presented in this paper

    Intersubject Regularity in the Intrinsic Shape of Human V1

    Full text link
    Previous studies have reported considerable intersubject variability in the three-dimensional geometry of the human primary visual cortex (V1). Here we demonstrate that much of this variability is due to extrinsic geometric features of the cortical folds, and that the intrinsic shape of V1 is similar across individuals. V1 was imaged in ten ex vivo human hemispheres using high-resolution (200 μm) structural magnetic resonance imaging at high field strength (7 T). Manual tracings of the stria of Gennari were used to construct a surface representation, which was computationally flattened into the plane with minimal metric distortion. The instrinsic shape of V1 was determined from the boundary of the planar representation of the stria. An ellipse provided a simple parametric shape model that was a good approximation to the boundary of flattened V1. The aspect ration of the best-fitting ellipse was found to be consistent across subject, with a mean of 1.85 and standard deviation of 0.12. Optimal rigid alignment of size-normalized V1 produced greater overlap than that achieved by previous studies using different registration methods. A shape analysis of published macaque data indicated that the intrinsic shape of macaque V1 is also stereotyped, and similar to the human V1 shape. Previoud measurements of the functional boundary of V1 in human and macaque are in close agreement with these results

    Discrete curvature approximations and segmentation of polyhedral surfaces

    Get PDF
    The segmentation of digitized data to divide a free form surface into patches is one of the key steps required to perform a reverse engineering process of an object. To this end, discrete curvature approximations are introduced as the basis of a segmentation process that lead to a decomposition of digitized data into areas that will help the construction of parametric surface patches. The approach proposed relies on the use of a polyhedral representation of the object built from the digitized data input. Then, it is shown how noise reduction, edge swapping techniques and adapted remeshing schemes can participate to different preparation phases to provide a geometry that highlights useful characteristics for the segmentation process. The segmentation process is performed with various approximations of discrete curvatures evaluated on the polyhedron produced during the preparation phases. The segmentation process proposed involves two phases: the identification of characteristic polygonal lines and the identification of polyhedral areas useful for a patch construction process. Discrete curvature criteria are adapted to each phase and the concept of invariant evaluation of curvatures is introduced to generate criteria that are constant over equivalent meshes. A description of the segmentation procedure is provided together with examples of results for free form object surfaces

    Extracting surface representations from rim curves

    Get PDF
    LNCS v. 3852 is the conference proceedings of ACCV 2006In this paper, we design and implement a novel method for constructing a mixed triangle/quadrangle mesh from the 3D space curves (rims) estimated from the profiles of an object in an image sequence without knowing the original 3D topology of the object. To this aim, a contour data structure for representing visual hull, which is different from that for CT/MRI, is introduced. In this paper, we (1) solve the "branching structure" problem by introducing some additional "directed edge", and (2) extract a triangle/ quadrangle closed mesh from the contour structure with an algorithm based on dynamic programming. Both theoretical demonstration and real world results show that our proposed method has sufficient robustness with respect to the complex topology of the object, and the extracted mesh is of high quality. © Springer-Verlag Berlin Heidelberg 2006.postprintThe 7th Asian Conference on Computer Vision (ACCV 2006), Hyderabad, India, 13-16 January 2006. In Lecture Notes in Computer Science, 2006, v. 3852, p. 732-74

    SEGMENTASI DAN REKONSTRUKST CITRA ORGAN DALAM TIGA DIMENSI MENGGUNAKAN MATEMATIKA MORFOLOGI DAN TRIANGULASI DELAUNAY

    Get PDF
    Sistem pencitraan medis seperti MN atau CT memberikan citra tom.ografi dalam bentuk bidang-bidang penampang irisan tipis dari organ bagian dalam tubuh manusia

    Static methods for object reconstruction overview: for medical diagnosis

    Get PDF
    This article presents the overview of static methods exploited for object reconstruction from point cloud or the special case which are the sets of parallel contours gathered from the medical scanners. It includes a brief description of each method and a comparison of their performance in respect to the achieved object appearance, an impact of noisy data, possible types of object reconstruction and time consumption. The aim of this comparison is to find which of the presented methods are promising for object reconstruction needed for medical diagnosis

    Static methods for object reconstruction overview: for medical diagnosis

    Get PDF
    This article presents the overview of static methods exploited for object reconstruction from point cloud or the special case which are the sets of parallel contours gathered from the medical scanners. It includes a brief description of each method and a comparison of their performance in respect to the achieved object appearance, an impact of noisy data, possible types of object reconstruction and time consumption. The aim of this comparison is to find which of the presented methods are promising for object reconstruction needed for medical diagnosis
    • …
    corecore