76,153 research outputs found

    A distributed optimization framework for localization and formation control: applications to vision-based measurements

    Full text link
    Multiagent systems have been a major area of research for the last 15 years. This interest has been motivated by tasks that can be executed more rapidly in a collaborative manner or that are nearly impossible to carry out otherwise. To be effective, the agents need to have the notion of a common goal shared by the entire network (for instance, a desired formation) and individual control laws to realize the goal. The common goal is typically centralized, in the sense that it involves the state of all the agents at the same time. On the other hand, it is often desirable to have individual control laws that are distributed, in the sense that the desired action of an agent depends only on the measurements and states available at the node and at a small number of neighbors. This is an attractive quality because it implies an overall system that is modular and intrinsically more robust to communication delays and node failures

    Low-cost, multi-agent systems for planetary surface exploration

    Get PDF
    The use of off-the-shelf consumer electronics combined with top-down design methodologies have made small and inexpensive satellites, such as CubeSats, emerge as viable, low-cost and attractive space-based platforms that enable a range of new and exciting mission scenarios. In addition, to overcome some of the resource limitation issues encountered with these platforms, distributed architectures have emerged to enable complex tasks through the use of multiple low complexity units. The low-cost characteristics of such systems coupled with the distributed architecture allows for an increase in the size of the system beyond what would have been feasible with a monolithic system, hence widening the operational capabilities without significantly increasing the control complexity of the system. These ideas are not new for Earth orbiting devices, but excluding some distributed remote sensing architectures they are yet to be applied for the purpose of planetary exploration. Experience gained through large rovers demonstrates the value of in-situ exploration, which is however limited by the associated high-cost and risk. The loss of a rover can and has happened because of a number of possible failures: besides the hazards directly linked to the launch and journey to the target-body, hard landing and malfunctioning of parts are all threats to the success of the mission. To overcome these issues this paper introduces the concept of using off-the-shelf consumer electronics to deploy a low-cost multi-rover system for future planetary surface exploration. It is shown that such a system would significantly reduce the programmatic-risk of the mission (for example catastrophic failure of a single rover), while exploiting the inherent advantages of cooperative behaviour. These advantages are analysed with a particular emphasis put upon the guidance, navigation and control of such architectures using the method of artificial potential field. Laboratory tests on multi-agent robotic systems support the analysis. Principal features of the system are identified and the underlying advantages over a monolithic single-agent system highlighted

    Position and Orientation Based Formation Control of Multiple Rigid Bodies with Collision Avoidance and Connectivity Maintenance

    Full text link
    This paper addresses the problem of position- and orientation-based formation control of a class of second-order nonlinear multi-agent systems in a 33D workspace with obstacles. More specifically, we design a decentralized control protocol such that each agent achieves a predefined geometric formation with its initial neighbors, while using local information based on a limited sensing radius. The latter implies that the proposed scheme guarantees that the initially connected agents remain always connected. In addition, by introducing certain distance constraints, we guarantee inter-agent collision avoidance as well as collision avoidance with the obstacles and the boundary of the workspace. The proposed controllers employ a novel class of potential functions and do not require a priori knowledge of the dynamical model, except for gravity-related terms. Finally, simulation results verify the validity of the proposed framework

    Mobile Formation Coordination and Tracking Control for Multiple Non-holonomic Vehicles

    Full text link
    This paper addresses forward motion control for trajectory tracking and mobile formation coordination for a group of non-holonomic vehicles on SE(2). Firstly, by constructing an intermediate attitude variable which involves vehicles' position information and desired attitude, the translational and rotational control inputs are designed in two stages to solve the trajectory tracking problem. Secondly, the coordination relationships of relative positions and headings are explored thoroughly for a group of non-holonomic vehicles to maintain a mobile formation with rigid body motion constraints. We prove that, except for the cases of parallel formation and translational straight line formation, a mobile formation with strict rigid-body motion can be achieved if and only if the ratios of linear speed to angular speed for each individual vehicle are constants. Motion properties for mobile formation with weak rigid-body motion are also demonstrated. Thereafter, based on the proposed trajectory tracking approach, a distributed mobile formation control law is designed under a directed tree graph. The performance of the proposed controllers is validated by both numerical simulations and experiments
    corecore