10 research outputs found

    Statistical/Geometric Techniques for Object Representation and Recognition

    Get PDF
    Object modeling and recognition are key areas of research in computer vision and graphics with wide range of applications. Though research in these areas is not new, traditionally most of it has focused on analyzing problems under controlled environments. The challenges posed by real life applications demand for more general and robust solutions. The wide variety of objects with large intra-class variability makes the task very challenging. The difficulty in modeling and matching objects also vary depending on the input modality. In addition, the easy availability of sensors and storage have resulted in tremendous increase in the amount of data that needs to be processed which requires efficient algorithms suitable for large-size databases. In this dissertation, we address some of the challenges involved in modeling and matching of objects in realistic scenarios. Object matching in images require accounting for large variability in the appearance due to changes in illumination and view point. Any real world object is characterized by its underlying shape and albedo, which unlike the image intensity are insensitive to changes in illumination conditions. We propose a stochastic filtering framework for estimating object albedo from a single intensity image by formulating the albedo estimation as an image estimation problem. We also show how this albedo estimate can be used for illumination insensitive object matching and for more accurate shape recovery from a single image using standard shape from shading formulation. We start with the simpler problem where the pose of the object is known and only the illumination varies. We then extend the proposed approach to handle unknown pose in addition to illumination variations. We also use the estimated albedo maps for another important application, which is recognizing faces across age progression. Many approaches which address the problem of modeling and recognizing objects from images assume that the underlying objects are of diffused texture. But most real world objects exhibit a combination of diffused and specular properties. We propose an approach for separating the diffused and specular reflectance from a given color image so that the algorithms proposed for objects of diffused texture become applicable to a much wider range of real world objects. Representing and matching the 2D and 3D geometry of objects is also an integral part of object matching with applications in gesture recognition, activity classification, trademark and logo recognition, etc. The challenge in matching 2D/3D shapes lies in accounting for the different rigid and non-rigid deformations, large intra-class variability, noise and outliers. In addition, since shapes are usually represented as a collection of landmark points, the shape matching algorithm also has to deal with the challenges of missing or unknown correspondence across these data points. We propose an efficient shape indexing approach where the different feature vectors representing the shape are mapped to a hash table. For a query shape, we show how the similar shapes in the database can be efficiently retrieved without the need for establishing correspondence making the algorithm extremely fast and scalable. We also propose an approach for matching and registration of 3D point cloud data across unknown or missing correspondence using an implicit surface representation. Finally, we discuss possible future directions of this research

    Partial shape matching using CCP map and weighted graph transformation matching

    Get PDF
    La dĂ©tection de la similaritĂ© ou de la diffĂ©rence entre les images et leur mise en correspondance sont des problĂšmes fondamentaux dans le traitement de l'image. Pour rĂ©soudre ces problĂšmes, on utilise, dans la littĂ©rature, diffĂ©rents algorithmes d'appariement. MalgrĂ© leur nouveautĂ©, ces algorithmes sont pour la plupart inefficaces et ne peuvent pas fonctionner correctement dans les situations d’images bruitĂ©es. Dans ce mĂ©moire, nous rĂ©solvons la plupart des problĂšmes de ces mĂ©thodes en utilisant un algorithme fiable pour segmenter la carte des contours image, appelĂ©e carte des CCPs, et une nouvelle mĂ©thode d'appariement. Dans notre algorithme, nous utilisons un descripteur local qui est rapide Ă  calculer, est invariant aux transformations affines et est fiable pour des objets non rigides et des situations d’occultation. AprĂšs avoir trouvĂ© le meilleur appariement pour chaque contour, nous devons vĂ©rifier si ces derniers sont correctement appariĂ©s. Pour ce faire, nous utilisons l'approche « Weighted Graph Transformation Matching » (WGTM), qui est capable d'Ă©liminer les appariements aberrants en fonction de leur proximitĂ© et de leurs relations gĂ©omĂ©triques. WGTM fonctionne correctement pour les objets Ă  la fois rigides et non rigides et est robuste aux distorsions importantes. Pour Ă©valuer notre mĂ©thode, le jeu de donnĂ©es ETHZ comportant cinq classes diffĂ©rentes d'objets (bouteilles, cygnes, tasses, girafes, logos Apple) est utilisĂ©. Enfin, notre mĂ©thode est comparĂ©e Ă  plusieurs mĂ©thodes cĂ©lĂšbres proposĂ©es par d'autres chercheurs dans la littĂ©rature. Bien que notre mĂ©thode donne un rĂ©sultat comparable Ă  celui des mĂ©thodes de rĂ©fĂ©rence en termes du rappel et de la prĂ©cision de localisation des frontiĂšres, elle amĂ©liore significativement la prĂ©cision moyenne pour toutes les catĂ©gories du jeu de donnĂ©es ETHZ.Matching and detecting similarity or dissimilarity between images is a fundamental problem in image processing. Different matching algorithms are used in literature to solve this fundamental problem. Despite their novelty, these algorithms are mostly inefficient and cannot perform properly in noisy situations. In this thesis, we solve most of the problems of previous methods by using a reliable algorithm for segmenting image contour map, called CCP Map, and a new matching method. In our algorithm, we use a local shape descriptor that is very fast, invariant to affine transform, and robust for dealing with non-rigid objects and occlusion. After finding the best match for the contours, we need to verify if they are correctly matched. For this matter, we use the Weighted Graph Transformation Matching (WGTM) approach, which is capable of removing outliers based on their adjacency and geometrical relationships. WGTM works properly for both rigid and non-rigid objects and is robust to high order distortions. For evaluating our method, the ETHZ dataset including five diverse classes of objects (bottles, swans, mugs, giraffes, apple-logos) is used. Finally, our method is compared to several famous methods proposed by other researchers in the literature. While our method shows a comparable result to other benchmarks in terms of recall and the precision of boundary localization, it significantly improves the average precision for all of the categories in the ETHZ dataset

    A neuro-genetic hybrid approach to automatic identification of plant leaves

    Get PDF
    Plants are essential for the existence of most living things on this planet. Plants are used for providing food, shelter, and medicine. The ability to identify plants is very important for several applications, including conservation of endangered plant species, rehabilitation of lands after mining activities and differentiating crop plants from weeds. In recent times, many researchers have made attempts to develop automated plant species recognition systems. However, the current computer-based plants recognition systems have limitations as some plants are naturally complex, thus it is difficult to extract and represent their features. Further, natural differences of features within the same plant and similarities between plants of different species cause problems in classification. This thesis developed a novel hybrid intelligent system based on a neuro-genetic model for automatic recognition of plants using leaf image analysis based on novel approach of combining several image descriptors with Cellular Neural Networks (CNN), Genetic Algorithm (GA), and Probabilistic Neural Networks (PNN) to address classification challenges in plant computer-based plant species identification using the images of plant leaves. A GA-based feature selection module was developed to select the best of these leaf features. Particle Swam Optimization (PSO) and Principal Component Analysis (PCA) were also used sideways for comparison and to provide rigorous feature selection and analysis. Statistical analysis using ANOVA and correlation techniques confirmed the effectiveness of the GA-based and PSO-based techniques as there were no redundant features, since the subset of features selected by both techniques correlated well. The number of principal components (PC) from the past were selected by conventional method associated with PCA. However, in this study, GA was used to select a minimum number of PC from the original PC space. This reduced computational cost with respect to time and increased the accuracy of the classifier used. The algebraic nature of the GA’s fitness function ensures good performance of the GA. Furthermore, GA was also used to optimize the parameters of a CNN (CNN for image segmentation) and then uniquely combined with PNN to improve and stabilize the performance of the classification system. The CNN (being an ordinary differential equation (ODE)) was solved using Runge-Kutta 4th order algorithm in order to minimize descritisation errors associated with edge detection. This study involved the extraction of 112 features from the images of plant species found in the Flavia dataset (publically available) using MATLAB programming environment. These features include Zernike Moments (20 ZMs), Fourier Descriptors (21 FDs), Legendre Moments (20 LMs), Hu 7 Moments (7 Hu7Ms), Texture Properties (22 TP) , Geometrical Properties (10 GP), and Colour features (12 CF). With the use of GA, only 14 features were finally selected for optimal accuracy. The PNN was genetically optimized to ensure optimal accuracy since it is not the best practise to fix the tunning parameters for the PNN arbitrarily. Two separate GA algorithms were implemented to optimize the PNN, that is, the GA provided by MATLAB Optimization Toolbox (GA1) and a separately implemented GA (GA2). The best chromosome (PNN spread) for GA1 was 0.035 with associated classification accuracy of 91.3740% while a spread value of 0.06 was obtained from GA2 giving rise to improved classification accuracy of 92.62%. The PNN-based classifier used in this study was benchmarked against other classifiers such as Multi-layer perceptron (MLP), K Nearest Neigbhour (kNN), Naive Bayes Classifier (NBC), Radial Basis Function (RBF), Ensemble classifiers (Adaboost). The best candidate among these classifiers was the genetically optimized PNN. Some computational theoretic properties on PNN are also presented

    Application of Fuzzy Logic for Performance Enhancement of Drives

    Get PDF
    Fuzzy logic shows enormous potential for advancing power electronics technology. Its application to DC and AC drives control is discussed here. Initially, a phase-controlled bridge converter DC drive was considered. Analysis of converter performance at continuous and discontinuous conduction modes was first conducted. Fuzzy control was used to linearize the transfer characteristics of the converter in discontinuous conduction mode. It was then extended to current and speed loops, replacing the conventional proportional-integral controllers. The control algorithms were developed in detail, and verified by PC-SIMNON (developed by Lund Institute of Technology Sweden) digital simulation. Significant performance improvement was achieved over conventional control methods. Efficiency optimization of an indirect vector controlled induction motor drive was next considered. An accurate loss model of the converter induction machine system was first developed. Steady-state fundamental and harmonics loss characteristics, besides the dynamic of the machine were analyzed and incorporated in the model, resulting in a new synchronous frame dynamic De-Qe equivalent circuit. The converter system has been modeled accurately for conduction and switching losses. The lossy models were then used in the validation of the fuzzy logic based on-line efficiency optimization control. At steady-state, the fuzzy controller adaptively changes the excitation current on the basis of measured input power, until the maximum efficiency point is reached. The pulsating torque, due to flux reduction, has been compensated by an ingenious feedforward scheme. During transients, rated flux is established, to get the best transient response. After a comprehensive simulation study, an experimental 5 hp drive system was tested, with the proposed controller implemented on a Texas Instrument TMS320C25 digital signal processor, and the theoretical development was fully validated. Finally, fuzzy logic was applied in combination with model-reference adaptive control (MRAC) technique to slip gain tuning of an indirect vector controlled induction motor drive. The MRAC methods based on reactive power and D-axis voltage were combined through a weighting factor, generated by a fuzzy controller, that ensures the use of the best method for any point in the torque-speed plane. A second fuzzy controller tunes the slip gain based on combined detuning error and its slope. The drive performance was extensively investigated through simulations and experiments. The results confirmed the validity of the proposed method

    Advances in Image Processing, Analysis and Recognition Technology

    Get PDF
    For many decades, researchers have been trying to make computers’ analysis of images as effective as the system of human vision is. For this purpose, many algorithms and systems have previously been created. The whole process covers various stages, including image processing, representation and recognition. The results of this work can be applied to many computer-assisted areas of everyday life. They improve particular activities and provide handy tools, which are sometimes only for entertainment, but quite often, they significantly increase our safety. In fact, the practical implementation of image processing algorithms is particularly wide. Moreover, the rapid growth of computational complexity and computer efficiency has allowed for the development of more sophisticated and effective algorithms and tools. Although significant progress has been made so far, many issues still remain, resulting in the need for the development of novel approaches

    Deep learning for animal recognition

    Get PDF
    Deep learning has obtained many successes in different computer vision tasks such as classification, detection, and segmentation of objects or faces. Many of these successes can be ascribed to training deep convolutional neural network architectures on a dataset containing many images. Limited research has explored deep learning methods for performing recognition or detection of animals using a limited number of images. This thesis examines the use of different deep learning techniques and conventional computer vision methods for performing animal recognition or detection with relatively small training datasets and has the following objectives: 1) Analyse the performance of deep learning systems compared to classical approaches when there exists a limited number of images of animals; 2) Develop an algorithm for effectively dealing with rotation variation naturally present in aerial images; 3) Construct a computer vision system that is more robust to illumination variation; 4) Analyse how important the use of different color spaces is in deep learning; 5) Compare different deep convolutional neural-network algorithms for detecting and recognizing individual instances (identities) in a group of animals, for example, badgers. For most of the experiments, effectively reduced neural network recognition systems are used, which are derived from existing architectures. These reduced systems are compared to standard architectures and classical computer vision methods. We also propose a color transformation algorithm, a novel rotation-matrix data-augmentation algorithm and a hybrid variant of such a method, that factors color constancy with the aim to enhance images and construct a system that is more robust to different kinds of visual appearances. The results show that our proposed algorithms aid deep learning systems to become more accurate in classifying animals for a large number of different animal datasets. Furthermore, the developed systems yield performances that significantly surpass classical computer vision techniques, even with limited amounts of available images for training

    An endogenous approach to education: with reference to Cairo, Egypt

    Get PDF
    The central focus of this research relates to the form that education should take in order to promote a desirable level and direction of development in Egypt. This firstly requires the identification of a model of development that is appropriate to Egypt before then going on to define the forms of education that support it. The researcher's own upbringing and knowledge of educational backgrounds in Egypt prompted him to learn more about this area of study with a particular emphasis on the architectural context of the learning environment and school design.A major postulate of this research is that education is a subordinate component in a larger system of societies' development. This means that any educational policy should stem from a long-term strategy to support this aim. The present study examines a number of universal developmental theories against the history of development in Egypt. In analysing these models it is concluded that the endogenous approach is the most appropriate to the Egyptian context. Theories of education are studied to provide an educational strategy that fits into this approach. Further support is provided through addressing learning processes and human needs, particularly in connection with primary school children. Feedback was obtained through the use of a field survey and a case study, to confirm the relevance of these theories to the Egyptian context.The thesis consists of three parts and the conclusion. The first part introduces a background of the study. The second part sets the theoretical framework over three chapters. The first chapter tests a number of developmental paradigms against the endogenous model at the state level. The second discusses educational theories that support this model at the local community level. And the third chapter refers to the individual level, exploring the learning and needs of children.The third part of the thesis is dedicated to the fieldwork. The aim of this part of the study was to generate direct feedback concerning the relevance of the studied theories to the Egyptian context. It employed an open -ended survey, investigating people's perception of these notions. The survey involved 84 teachers, parents and educational administrators, as well as 36 schoolchildren between the ages of nine and twelve. A case study is employed to illustrate the practical application of the research findings to schools.In the conclusion, the results of the fieldwork are integrated with the theoretical aspects of the study to identify favourable conditions for education. The thesis demonstrates that favourable conditions are more likely to be achieved within an endogenous framework. Recommendations are made concerning the content and planning of the educational environment for children, towards the promotion of this approach to education in Egypt. Further research areas are suggested to support this concept within the Egyptian context

    Massachusetts Domestic and Foreign Corporations Subject to an Excise: For the Use of Assessors (2004)

    Get PDF
    International audienc
    corecore