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1INTRODUCTION

W ildlife and domestic monitoring of animals is an interesting area
of research. This interest arises due to the increasing threat
of animal rustling in some African countries and endangered

wildlife animals in some European countries and other parts of the world.
Hence to best protect and monitor the livestock or the conservation of wild
animals, there is a need to deploy technological systems with the prowess
to combat the above stated problems. One such technological system is the
use of neural network systems, or computer vision techniques combined
with machine learning algorithms to deal with these problems. This thesis
concentrates on the use of computer vision techniques, machine learning
and deep learning techniques for performing recognition, detection, or a
combination of both tasks.

The main problem is to determine how the two broad techniques can be
used to extract features from images and then predict the corresponding
image labels. This problem even becomes more pronounced when objects
or animals exhibit similarities in appearance or background information.
The use of classical computer vision methods to approach these problems
could involve tedious feature engineering, and cannot easily be adapted or
transferred to new application domains because they are domain specific.
To address these challenges, the emergence of deep learning (Krizhevsky
et al., 2012) provides several learning possibilities for instance: use of
transfer learning through which pretrained weights from one domain
can be transferred or adapted to another application domain. The use
of deep learning has recorded a lot of success in several tasks such as
object classification (Szegedy et al., 2015; He et al., 2016b), detection
(Liu et al., 2016b; Ren et al., 2015), and segmentation (Chen et al., 2018).
The success of most of the deep learning methods relies on training deep
neural networks on large image datasets.
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2 introduction

This thesis aims to achieve the following objectives: we extended the
research of deep learning on small datasets with a limited amount of images.
Additionally, we explore the concept of reduced deep neural network
architectures compared to standard architectures, and classical computer
vision methods. To further enhance recognition system accuracies on either
aerial or still views, we propose a rotation-matrix data-augmentation (DA)
method and a hybrid variant that combines rotation-matrix and color-
constancy as another approach to data-augmentation. The latter aids the
recognition system to be robust to illumination variance. Furthermore,
the study also attempts to explore the benefits of different color spaces
for deep learning. Finally, we want to investigate neural network based
detection techniques for recognizing and detecting instances of a specific
animal.
The earlier mentioned broad recognition systems are examined on

images from several datasets: still images (Wild-Anim dataset, Bird-600
dataset, Croatia-fish dataset), aerial images (UAV dataset containing cow
and non-cow images), segmented images (Animal-shape and MPEG-7
datasets), and images from a rescue center (Badger dataset). For this aim,
the use of classical methods and customized neural network architectures
are used for feature extraction. Consequently, the supervised learning
algorithm is used for detecting or classifying an image depending on the
dataset under study. Additionally the study attempts to propose novel
approaches to data augmentation (rotation matrix algorithm alone, or a
hybrid variant that factors color constancy) for either enhancing an image
or increasing the number of images during training of a given network.
Overall the comparison of classical approaches to deep learning methods
on the Wild-Anim or Aerial datasets show that the latter method always
yields surpassing performance when compared to the former. Moreover, it
is important to use the proposed data-augmentation algorithms to obtain
improved recognition performances.
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1.1 Animal Recognition

Animal Recognition

Animal recognition is an area of research that involves the use of a computer
vision algorithm for extracting features from an image or video, and then
uses machine learning algorithms for predicting the labels of a given image.
The study of animal recognition presents several societal benefits: 1) It
allows the monitoring and conservation of wildlife animals especially in
an environment where some animals are on the verge of extinction. 2)
It also provides the public an important tool to inspect and monitor
animal population changes over a period of time. 3) It allows biologists
and ecologists to better understand the impact of the animal population
to their environment (Wilber et al., 2013).

A lot of previous research on the animal recognition task has employed
a classical approach to deal with the classification of different instances
of images within a given dataset. The research by Guilford et al. (2009)
explores the use of supervised and unsupervised learning algorithms for
classifying bird activities based on simple properties obtained from immer-
sion data. An extension of this research was investigated by Dickinson et al.
(2010); they developed an automatic visual system for monitoring nesting
seabirds. Another improvement in the recognition of seabirds research
(Qing et al., 2011) is the use of a boosted combination of the histogram of
orientated gradients (HOG) and local binary patterns (LBP) (Pietikäinen,
2010) for extracting features before classification. The research by Wilber
et al. (2013) designed a classical approach to recognizing animals in the
desert, by using LBP and SIFT (Lowe, 2004) for feature extraction and
used a one-vs-all support vector machine (SVM) for classification. The
research by Lazebnik et al. (2005) examines a probabilistic part-based
method for texture and object recognition of birds. One trending approach
that often surpasses most classical methods is the convolutional neural
network (CNN) (Schmidhuber, 2015). The research by Jaeger et al. (2015)
combined a CNN with a linear SVM classifier for recognizing fishes.

CNNs are part of deep learning methods and will play a central role in
this dissertation.
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Animal Detection and Localization

The main difference between the previously explained animal recognition
and detection is that the latter involves accurately classifying and finding
the location of the animal in an image. The use of detection algorithms is
important in computer vision systems as these aid segmenting or localizing
the region of interest from an image. Shallow approaches to detection
adopted the background subtraction technique (Elgammal et al., 2000;
Chen, 2009), other background differencing variants (Liu and Hou, 2012;
Liu et al., 2016a; Sengar and Mukhopadhyay, 2017), and optimal flow
(Zhou and Zhang, 2005) are algorithms for detecting objects of interest
in motion. The authors in (Porto et al., 2013) developed a system that
comprises of a multi-camera video-recording system, the software compo-
nent uses the Viola-Jones (Viola and Jones, 2004) algorithm for detecting
behaviors of lying cows. In this dissertation to determine where an animal
is in an image, it is crucial to employ the neural network based detection
algorithms to identify the animal location within an image.

Image Enhancement

Most computer vision or deep learning methods rely on enhanced im-
ages to obtain improved detection or recognition performances. Image
enhancement algorithms aim at modifying content information or at-
tributes present in an image to make it suitable for specific application
purposes. Image enhancement techniques (Maini and Aggarwal, 2010) can
be broadly grouped into two domains: spatial domain methods manipulate
pixels in an image and frequency domain methods transform an image
into the Fourier transform domain. Most data-augmentation methods such
as: color-casting, rotation, flipping, cropping, and scaling use the spatial
domain for modifying original image contents. Proper image enhancement
can help recognition systems to obtain better results.

The three broad topics of this dissertation as discussed above can be
grouped into five objectives. The next sections briefly discuss the objectives,
the contributions and their respective research questions for this thesis.
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1.2 Objectives of the Thesis
This dissertation examines animal recognition and detection systems. The
objectives of the research can be grouped into three broad categories: Use of
compact neural networks, image enhancement, and adequate localization of
objects of interest. The five detailed objectives of this thesis are described
below:
Firstly, to analyze the best image recognition method when there are

not many images. Most of the datasets in this application domain contain
a relatively small amount of images. However, the use of existing neural
network architectures requires a considerable amount of neurons, network
parameters, and needs massive training data and long training times.
Therefore we propose compact neural network architectures with fewer
network parameters used during training of the network which lowers
computational cost, while retaining a suitable classification performance.
Secondly, to handle rotation invariance in unmanned aerial vehicle

(UAV) images without creating too many images. The orientation of the
path of flight and the orientations of the target objects that is, the animals
will be random (haphazard). Therefore, we propose a rotation matrix
algorithm as a novel method of data augmentation (DA). Conventional
DA techniques transform input data and increase the amount of training
data when there exist insufficient data, with an aim to obtain better
classification results. The new DA method is useful for enhancing the
pixel information in an image. Additionally, the new DA method does
not require an increase in the amount of images during training of the
network compared to the conventional DA approaches. The DA methods
combined with pretrained instances of the used reduced neural network
obtain high classification scores.

Thirdly, to develop a recognition system that is robust to illumination
variances due to varying daytime light conditions (day or night) and
weather direction of sunlight. For this purpose, we developed a hybrid
variant of the rotation-matrix data augmentation that combines rotation-
matrix and color constancy as another method for DA. The proposed
technique can be used to increase the number of training images especially
when there exists an insufficient amount of images within a dataset. An-
other merit of the proposed method is that it can enhance the illumination
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quality of a blurred image. Additionally, an appropriate selection of grid
resolution and angular bounds can aid the pretrained instance of the used
reduced neural network to obtain high classification scores.
Furthermore, we analyze how important the use of color spaces is in

deep learning. For this, we construct a color conversion algorithm that
has the potential to transform a natural (RGB) or black and white (BW)
images to four other color spaces. Then we employed our custom network
to access the classification performance on several variants of the used
animal datasets.
Lastly, we want to analyze detection algorithms for detecting and

recognizing individual instances of badgers. One primary goal is to help
biologist (zoologist) who does not have time in developing detection
systems, to create a system that can detect and classify instances of the
mentioned animal. However, the main problem is that localizing and
finding an object of interest in an image is a difficult task within the
computer vision domain, especially when there exist high similarities in
object appearances. We investigated the use of neural network based
detection systems to adequately determine where an instance of an animal
is within a given image. The resulting model could be deployed into
real-time systems such as a drone or other data-acquisition systems.

1.3 Dissertation Overview

Comparison of classical methods to customized deep
learning methods

In Chapter 2 of this thesis, we compare several classical computer vision
methods combined with a supervised learning algorithm to customized
and existing deep learning techniques for recognizing still images of wild
animals. We attempt to answer the following research questions: Is there
any benefit of reducing network neurons from an existing deep learning
architecture? How well do reduced neural network architectures perform
relative to classical computer vision techniques for classifying wild animals?
To provide a solution to this challenge, we modified existing deep convolu-
tional neural network (CNN) architectures (AlexNet and GoogleNet) by



1.3 dissertation overview 7

reducing the number of neurons in each layer of the fully-connected layer
(AlexNet) and each layer in the last inception module of the GoogleNet
architecture (with an exemption of the first layer). The new architectures
use fewer neurons and reduce computational costs during training of the
network models. Additionally, the proposed network architectures present
almost similar performance levels when compared to existing networks.
Moreover, we compared these deep learning architectures to classical tech-
niques: variants of the bag of visual words (BOW) alone or BOW with
the histogram of orientation gradients (HOG-BOW) with a regularized
support vector machine (SVM). The results show that most of the deep
neural network methods either in their existing or reduced forms yield
performances that surpass the classical approaches when examined on our
relatively small dataset.

Rotation-matrix data augmentation on UAV images

We enhanced aerial images of cows and non-cow backgrounds before apply-
ing recognition systems. In Chapter 3, we examine the following research
questions: Can the transformation of aerial images to rotation-matrix
images enhance recognition systems to obtain high predictive scores? How
well do a more shallow depth neural network architecture or classical meth-
ods classify rotation-matrix data-augmentation compared to non-rotation-
matrix (original) images? To provide a possible solution to the stated
research questions, we propose a novel rotation matrix data-augmentation
technique that transforms a train or test image into a novel single image
with multiple randomly rotated copies of the input image. To combine
the different rotated images, the proposed method puts them in a grid
and adds realistic background pixels to glue them together. This ap-
proach presents some advantages: 1) It provides more informative images
which may aid to yield higher accuracies, 2) It does not require an in-
crease in the number of training images compared to other conventional
data-augmentation methods. The use of fine-tuned CNN models with the
proposed data-augmentation technique leads to significantly better results
than the classical approaches. The study again shows the relevance of
reducing the depth of neural network architectures.
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Unification of rotation matrix and color constancy

Previous approaches to data augmentation use cropping, rotation, illu-
mination, scaling, and color casting for creating more training images.
Chapter 4 of this thesis attempts to answer the following research ques-
tions. Can unifying the rotation matrix and color constancy algorithms
operated on different animal images be considered as a promising method
of data-augmentation? What role do an appropriate choice of selection of
grid resolution and angular bounds play for the proposed data augmentation
(DA) technique? We propose the combination of both color-constancy
and rotation matrix algorithm for transforming an input image. Since the
recommended approach results in an increase of the number of training
images, it can be considered as a method of data-augmentation similar to
the conventional approach. A merit of the proposed DA method is that it
enhances the color information in an image which could be useful for ob-
taining higher recognition accuracies. The study further shows that, using
finetuned CNNs with an appropriate selection of the grid resolution and
angular bounds for the rotation algorithm combined with color-constancy
methods yields the highest classification accuracies on most of the used
datasets.

Analysis of color spaces for image recognition in deep
learning

Several research works have focused on employing machine learning al-
gorithms for classifying natural or Black/White (BW) binary images.
Chapter 5 of this thesis attempts to examine the conversion of the two
broad kinds of images (natural or BW) into other color spaces before
applying a recognition system. Does the conversion of datasets containing
either of the mentioned images or new variants of the images affect the
performance of neural networks? To provide a possible solution to the
above research question, we describe the use of different versions of the
GoogleNet architecture (finetuned and scratch instances) for investigating
the classification performances on different color versions of image datasets.
We propose a color conversion algorithm, which presents the following
merits: It can transform binary masked (BW) images to images repre-
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sented in different color spaces (RGB, YCbCr, HSV, Lab), which show
marginal CNN classification performance improvements for some of the
methods. Additionally, it is an efficient algorithm and easy to implement
or use.

Detection and recognition of badgers using deep learn-
ing

Chapter 6 deals with the detection and recognition of badgers under
varying illumination backgrounds. Which of the detection neural network
algorithms is most suitable for application purposes especially at the deploy-
ment phase? To provide an answer to the research question, we propose
the use of several object detection algorithms based on deep neural net-
works for detecting and recognizing badgers from video data. For this, a
comparison is made between two neural network based detectors: SSD (Liu
et al., 2016b) and Faster R-CNN (Ren et al., 2015). SSD is combined with
the Inception-V2 (Ioffe and Szegedy, 2015) or MobileNet (Howard et al.,
2017) as a backbone and the Faster R-CNN detector is combined with
either Inception-V2 or Residual networks (He et al., 2016a) with 50 layers
(ResNet-50) as feature extractors. Furthermore, we compare the use of two
output activation functions: the softmax and sigmoid function. For the
experiments, we use several videos recorded with a low-resolution camera.
The results show that most of the trained SSD detectors significantly
outperform the different variants of the Faster R-CNN detector. All the
Faster R-CNN methods are computationally much faster than the SSD
techniques for training the system, although for testing SSD is a bit faster.
Hence, we suggest that the best found model, SSD-Inception-V2-Softmax,
could be improved and deployed into UAVs or thermal acquisition cam-
eras, as this can help to detect badgers in environments where they are
endangered.
Finally, Chapter 7 concludes the dissertation and briefly discuss the

achieved objectives of this thesis. The chapter also provides areas for
future research.





2CLASS ICAL AND DEEP
LEARNING METHODS

This chapter addresses the problem of animal recognition and examines the
benefit of modifying convolutional neural network (CNN) architectures for
this application. To achieve this aim, two broad classical feature extraction
methods are compared to deep learning techniques with an overall objective
of recognizing animals. For the classical approaches, variants of the bag
of visual words (BOW) alone and BOW with the histogram of oriented
gradients (HOG-BOW), each using two forms of spatial pooling approaches
are applied on two kinds of feature extraction method either using color or
gray level intensities. The final feature vectors extracted from these BOW
variants combined with an L2 regularized support vector machine (L2-
SVM) is used to distinguish between classes of the used dataset. Moreover,
we modified existing deep CNN architectures (AlexNet and GoogleNet) by
reducing the number of neurons in each layer of the fully-connected layer
(AlexNet) and each layer in the last inception module of the GoogleNet
architecture with an exemption of the first layer. The CNN was trained
using random weights (scratch) and pretrained weights (finetuned). The
existing CNN and the modified CNN architectures are compared to the
proposed BOW variants on a novel wild-animal dataset (Wild-Anim).
The experimental results show that the deep CNN methods significantly
outperform the traditional BOW techniques.

11
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This chapter is based on the paper:

Okafor, E., Pawara, P., Karaaba, F., Surinta. O., Codreanu. V., Schomaker, L.R.B.,
and Wiering, M.A. (2016). Comparative Study Between Deep Learning and Bag of
Visual Words for Wild-Animal Recognition. IEEE Symposium Series on
Computational Intelligence (IEEE SSCI), pp. 1-8
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The field of computer vision has the aim to construct intelligent
systems that can recognize the semantic content displayed on
images. Most research in this field has focused on recognizing

faces, objects, scenes, and characters. In this chapter, we describe several
techniques that use machine learning and pattern recognition methods
to recognize wild animal images, which has gained less attention from
the community. The concept of recognition of objects based on variations
in image content has gained attention over several decades now, and
has lately received an increased interest due to the advance of deep
learning techniques (Schmidhuber, 2015). This chapter focuses on different
methods from the computer vision community in which deep CNNs, feature
descriptors and machine learning algorithms are used to predict labels of
animal images.

Some approaches to animal, object and scene recognition have concen-
trated on the use of color descriptors (Van De Sande et al., 2010; Khan
et al., 2013; Sergyán, 2008). Also, the authors in (Khosla et al., 2012)
investigated the combination of local and global features for modelling
a framework for memorability prediction. In a quest to improve recog-
nition performance, the use of classical image descriptors such as the
Bag-of-Visual-Words (BOVW)1 has been applied to different fields. BOW
comes from traditional information retrieval (text) (Salton et al., 1971).
The concept of BOW involves the extraction of features (Csurka et al.,
2004; Wang and Huang, 2015) and construction of a codebook using an
unsupervised learning algorithm such as K-means clustering (Ye et al.,
2012), spectral clustering (Passalis and Tefas, 2016), local constrained
linear coding for pooling clusters (Wang et al., 2010), and the use of the
fast minimum spanning tree (Jothi et al., 2015). Finally, the extraction of
feature vectors by the BOW approach can be achieved using a soft assign-
ment scheme (Abdullah et al., 2010) or sparse ensemble learning methods
(Tang et al., 2015). Some recent works have used BOW as an input to some
hierarchical structures such as weakly supervised deep metric learning
(Li and Tang, 2015) and robust structured subspace learning (Li et al.,
2015). Moreover, the combination of BOW with the histogram of oriented
gradients on grayscale datasets has obtained a very good performance on
both handwritten character recognition (Surinta et al., 2015) and face

1 For convenience, we refer to BOVW as BOW
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recognition (Karaaba et al., 2016). In (Coates et al., 2011a), the authors
applied BOW on text detection and character recognition on scene images.

However, the concept of BOW has become old fashioned by the recently
emerging and successful area of deep learning with neural networks. These
learning techniques have been successfully applied to many applications
such as human face recognition (Pinto et al., 2011; Parkhi et al., 2015),
object recognition (Krizhevsky et al., 2012), handwritten character recog-
nition (LeCun et al., 1989, 1998; Ciresan et al., 2011) and medical image
recognition (Shin et al., 2016). The use of deep learning to learn from
large datasets has led to the evolution of deep architectures like AlexNet
(Krizhevsky et al., 2012), GoogleNet (Szegedy et al., 2015) and Residual
Networks (ResNets) (He et al., 2016b).

The BOW method (Csurka et al., 2004) has been a popular and widely
used method in the computer vision community. According to (Coates et al.,
2011b), the BOW technique outperforms other feature learning algorithms
like autoencoders and restricted Boltzmann machines. In addition to the
survey on the use of convolutional neural networks, the authors in (Girshick
et al., 2014) showed that regions with CNN (R-CNN) features outperform
HOG-based deformable part models and feature learning based methods
on PASCAL VOC datasets. Also, the authors in (Razavian et al., 2014)
demonstrated that CNN augmentation with a support vector machine
(SVM) outperforms BOW and other local feature descriptors.

Contributions
In this chapter, an investigation of the performance of 16 different tech-
niques on a novel wild-animal dataset, is proposed. To actualize this aim,
the use of existing deep CNN architectures (GoogleNet and AlexNet),
the modified versions of the deep CNN (Reduced Fine-tuned and Scratch
versions of GoogleNet and AlexNet) and variants of BOW techniques
are applied to a novel Wild-Anim dataset. The results show that the
modified CNN architectures are competitive when compared to the orig-
inal deep CNN architectures but require less computing time. This is
evident based on the significant decrease of the computational time by
27% and 26% for both the fine-tuned and scratch versions of the AlexNet
architectures respectively. Also, we compared the deep CNN architectures
to different variants of the BOW approach combined with an SVM with
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major emphasis on two spatial pooling strategies as well as the use of
color information on a Wild-Animal dataset. The results show that the
GoogleNet CNN architectures perform best. Furthermore, almost all CNN
architectures significantly outperform all BOW variants. The results also
show that the BOW method using color information with the max-pooling
strategy outperforms the HOG-BOW methods for both gray and color
image information on the used dataset for both spatial pooling strategies.
This is contrary to the view that HOG-BOW techniques outperform BOW
methods, which was shown before in character recognition (Surinta et al.,
2015) and facial recognition (Karaaba et al., 2016).
Outline. This chapter is organized in the following way. Section 2.1

briefly explains the basic deep learning processes. Section 2.2 describes
the different learning techniques used in the wild animal recognition
system. Section 2.4 describes the Wild-Anim dataset that is used in the
experiments. The experimental results of the deep learning methods and
bag of visual words are presented in Section 2.5. The conclusion and future
work are reported in Section 2.6.

2.1 Basic Deep Learning Processes
In order to understand the activities going on in each stage of a deep
neural network, below we briefly explain the processes based on some
mathematical principles.

Convolution Process: Convolutional layers employ learnable filters
which are each convolved with the layer’s input to produce feature maps.
The feature map Z l(x, y, i) for neuron i from each convolutional layer l
can be computed as:

Z l(x, y, i) = Bli +X l−1(x, y, c) ∗K l
i(x, y, c) (1)

The input to the convolutional neural network can be represented as a
tensor X l−1 from the previous layer with elements X(x, y, c), denoting the
value of the input unit within channel c at row x and column y. The input
to the convolution is convolved with the tensor kernel using a bank of
filters K l

i for the current layer with the same number of channels present in
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X l−1. Each convolved feature map in a given layer gets its corresponding
bias Bli added.

Detector Process: This process involves the use of a non-linear ac-
tivation function such as the Rectified Linear Unit (ReLU) (Krizhevsky
et al., 2012) to compute activations of all convolved extracted features.
The ReLU is often assigned to the output of each hidden unit in a con-
volutional layer and the fully connected layers. The output of the ReLU
P l(x, y, i) is calculated using the expression:

P l(x, y, i) = max(0,Z l(x, y, i)) (2)
Normalization Process: In this process, local response normalization

is used for normalizing the output of the ReLU (Krizhevsky et al., 2012;
Vedaldi and Lenc, 2015). The role of the local response normalization is
assumed to yield better generalization and introduces non-linearity that is
absent in the right hand side of the ReLU responses. The local response
normalization (Stutz, 2014) can be computed as:

Ql(x, y, i) = P l(x, y, i)

γ + α
∑
j∈M l

(P l(x, y, j))2


−β

(3)

where Ql(x, y, i) computes the response of the normalized activity from
the ReLU output P l(x, y, i). This is done by multiplying the output with
an inverse sum of squares plus an offset γ for all ReLU outputs within a
layer l. The normalization is local over the feature map M l. We employed
the same hyper-parameter setting as in (Krizhevsky et al., 2012) with the
following constant variables: γ = 2, α = 10−4 and β = 0.75.

Spatial Pooling Process: In this process, two spatial pooling ap-
proaches are employed in the two CNN architectures used in the experi-
ments.

1. Max-Pooling: The max-pooling operator computes the maximum
response of each feature channel obtained from the normalized output.
A max-pooling operator can be expressed as:

Rl(x̄, ȳ, i) = maxx,y∈M(x̄,ȳ,l)Q
l(x, y, i) (4)
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Where (x̄, ȳ) is the mean image position of the positions (x, y) inside
M(x̄, ȳ, l) that denotes the shape of the pooling layer, and Rl(x, y, i)
is the result of the spatial pooling of the convolutional layers.

2. Average-Pooling: The average-pooling operator computes the mean
response of each feature channel obtained from the normalized output.
An average-pooling operator can be expressed as:

Rl(x̄, ȳ, i) =
∑
x,y∈M(x̄,ȳ,l)Q

l(x, y, i)
|M(x̄, ȳ, l)| (5)

Regularization Process: In order to reduce over-fitting in the net-
work, the use of the dropout (Krizhevsky et al., 2012) regularization
scheme is applied to the output of the spatial pooling layer or mid-level
fully-connected layers. Dropout as a regularization technique can aid to
prevent complex co-adaptations on a training data. The dropout phe-
nomenon refers to an act of dropping hidden nodes in a neural network
based on a defined probability.

Classification Process: In this process, the probability of the class
labels from the output of the fully connected layer is computed using the
softmax activation function. The softmax activation function (Goodfellow
et al., 2016) computes the probabilities of the multi-class labels using the
sum of weighted inputs from the previous layer and is used in the learning
process:

yd =
exp(xd)∑D
d=1 exp(xd)

(6)

where yd is the output of the softmax activation function for class d, xd is
the summed input of output unit d in the final output layer of the fully
connected network and D is the total number of classes.

Often, the classification process employs the use of the top-K classifica-
tion error for computing the errors on the testset. The top-K loss is zero if
target class d is within the top K ranked scores (Vedaldi and Lenc, 2015):

L(y, d) = 0[|{k : yk ≥ yd}| < K] (7)
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The top-K loss is one for an example, if:

L(y, d) = 1[|{k : yk ≥ yd}| ≥ K] (8)

Where yd are the final outputs of the CNN. We report results of the top-1
error accuracy in all the experiments.

2.2 Learning Methods
This section discusses both deep learning using convolutional neural net-
works (CNNs) and variants of bag of visual words combined with a Support
Vector Machine (SVM) to deal with the wild animal dataset. We will make
use of two deep CNN architectures, AlexNet and GoogleNet, and modify
them. We will now explain these architectures and the modifications, that
results in 8 different deep learning architectures.

2.2.1 AlexNet Architecture

The AlexNet model, initially proposed in (Krizhevsky et al., 2012), out-
performed the non-deep learning methods for the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) in 2012. AlexNet consists of five
convolution layers, three pooling layers, and three fully connected layers
with approximately 60 million trainable parameters. This chapter explores
the use of both original and reduced versions of both scratch and fine-tuned
AlexNet models on the Wild-Anim dataset. Our experimental procedure
is similar to that of (Krizhevsky et al., 2012), that applied the stochastic
gradient descent update rule with momentum, which is expressed as:

ui+1 = µui − αL

δWi +

(
∂L

∂Wi

)
Di

 (9)

Wi+1 = Wi + ui+1 (10)

where Wi are the weights of the CNN, ui is the weight change, L is the
cross-entropy loss function uses the softmax activation for a given class, µ
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is the momentum term, αL is the learning rate, δ is the value for weight
decay, i is the iteration number, Di is the batch over index iteration i

and
(
∂L
∂Wi

)
computes the mean over the ith batch Di of the derivative in

the objective function with respect to Wi. We will now briefly explain the
AlexNet architecture models.

Scratch AlexNet: We will first train the AlexNet architecture from
scratch on the train-validation sets based on 5 different random shuffles of
the used dataset in order to obtain models that can be used to evaluate on
the test sets. The experimental settings are as follows; crop size 227× 227,
momentum 0.9, weight decay 5× 10−4, test iteration of the solver is 10,
batch size of training 10, test interval 100, base learning rate 1× 10−3,
learning policy is step with a step-size of 3× 104, a dropout of 0.5, gamma
0.1, with a maximum number of iterations of 30000, which generates a
snapshot model after every 1000 iterations. In this architecture only the
max-pooling strategy is used in the spatial pooling layers. This setting
is for the Original Scratch AlexNet (OS-AlexNet) model which has 4096
neurons in each of the fully-connected layers (FC6 and FC7) except in
the last layer FC8 in which the number of output neurons is equal to
the number of classes within the dataset. We modified the OS-AlexNet
model by reducing the number of neurons per fully-connected layer (FC6
and FC7) to 512, since this modification results in less demand on the
computer memory usage and speeds up the use of this architecture. The
block diagram in Figure. 1 illustrates the modified version of the AlexNet
architecture. The choice of 512 neurons in each of the fully connected

Figure 1: Block diagram of modified AlexNet architecture with reduction in
neurons in the fully connected layers.

layers is because it gives the best results after several experiments with
different numbers of neurons on the used dataset.
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Fine-tuned AlexNet: This version of the architecture relies on the
weights that are initialized by a pre-trained network. The pre-trained
network is trained on a subset of ImageNet (ImageNet Large-Scale Visual
Recognition Challenge (ILSVRC)) (Krizhevsky et al., 2012). This version
of the dataset consists of a minimum of 1000 images for each of the
1000 classes. The dataset is roughly divided into 1.2 million training
images, 50,000 validation images, and 150,000 testing images. Although
the ILSVRC ImageNet dataset has some categories of images which also
occur in the used dataset, the datasets contain different images.

The Original Fined-tuned AlexNet (OFT-AlexNet) and Reduced Fine-
tuned AlexNet (RFT-AlexNet) require a pre-trained CNN architecture
model. The pre-trained network of the AlexNet architecture was con-
structed by training on the ILSVRC ImageNet dataset. We maintain the
same experimental settings as discussed earlier. One exception is that the
maximum number of iterations is reduced to 10000 (10 snapshots) with a
step size of 10000 using a fixed learning rate of 0.001. We note that all
the experiments were carried out using the Caffe platform on a Ge-Force
GTX 960 GPU model.

2.2.2 GoogleNet Architecture

GoogleNet (Szegedy et al., 2015) is a famous deep learning architecture that
won the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
in 2014. This architecture is inspired by incorporating several inception
modules (Arora et al., 2014) which allows the stacking or concatenation
of filters of different dimensions and sizes into a single new filter (Shin
et al., 2016). This architecture consists of some outer convolutional and
pooling layers, three classifiers (two intermediate and one main) with a
regularization dropout of 0.7, 0.7 and 0.4 placed after the intermediate
fully connected-layer or main average pooling layer (at the top of the
ConvNet) respectively. This dropout helps to avoid overfitting during
training. Furthermore, this architecture has nine inception layers. In each
inception layer, there exist six convolution layers with different dimensions
of filters and one pooling layer. The architecture uses both average and
max-pooling strategies for creating smaller feature maps. We describe
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briefly in the following subsections the various instances of GoogleNet
used in our study.
Scratch GoogleNet: The Scratch GoogleNet architecture does not

rely on any pre-trained CNN model. The experimental settings are as
follows; crop size 224× 224, momentum 0.9, weight decay 2× 10−4, test
iteration 10, batch size 10, test interval 100, base learning rate 1× 10−3,
step-size of 3× 104, interval display 40, average loss 40, power 0.5, gamma
0.1 and a maximum number of iterations of 30000 (30 snapshots). The
number of output neurons fed to the three classifiers of this architecture
is equal to the number of classes present in our dataset. The GoogleNet
architecture uses both the max-pooling and average pooling strategies in
different spatial pooling layers.

This setting is for Original Scratch GoogleNet (OS-GoogleNet) with the
last inception layer which contains a max-pooling layer and six convolu-
tional layers. The number of filters (neurons) in each layer within the last
inception layer is as follows: 384, 192, 384, 48, 128 and 128 respectively.
In the Reduced Scratch GoogleNet (RS-GoogleNet) the last inception
layer of the OS-GoogleNet is modified to contain the following numbers
of filters in each of the convolutional layers in the last inception layer: 24,
24, 24, 16 and 16 respectively, except for the first layer which has 384
filters. The block diagram in Figure 2 illustrates the modification in the
last inception layer of the GoogleNet architecture.
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Figure 2: Block diagram showing our modification of the number of output filters
for each convolution within the last inception layer of the GoogleNet
architecture.

Fine-tuned GoogleNet: The Original Fined-tuned GoogleNet (OFT-
GoogleNet) and Reduced Fine-tuned GoogleNet (RFT-GoogleNet) require
a pre-trained CNN architecture model. The pre-trained network of the
GoogleNet relies on the ILSVRC dataset that was explained in the para-
graph about the AlexNet architecture. We maintain the same experimental
settings as discussed earlier, except that the maximum number of itera-
tions is reduced to 10000 (10 snapshots) with a step size of 10000. We
used a fixed learning rate of 1× 10−3.

2.2.3 Variants of Bag of Visual Words (BOW) with
SVM

In this subsection, we describe two major kinds of BOW models.

Bag of Visual Words with Image Pixel Intensity: This technique
uses the extraction of patches from the training data based on the image
pixel intensities to construct a codebook (Ye et al., 2012) using K-means
clustering. The diagram in Figure. 3 shows a description of this technique.
The steps involved in setting up BOW consist of three processes which we
will explain now.
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Figure 3: Description of Bag of Visual Words combined with an SVM

Extracting Patches from the Training Data: The images are divided
into a set of sub-image patches X that is extracted randomly from unla-
belled training images, X = {x1,x2,x3, ...xN} where N is the number of
random patches and xk ∈ <t is some patch extracted from the training
images. The size of the patches is described with t = p× p pixels. In this ex-
periment, we used p = 9, which implies that 81 pixels were used in a patch.

Construction of the codebook: The codebook is constructed by applying
K-means clustering on the feature vectors consisting of pixel intensity
information which is contained in each patch. This is achieved by cluster-
ing the vectors obtained from the random selection of the patches. Let
C = {c1, c2, c3, ...ck}, with ci ∈ <t represent the codebook (Ye et al.,
2012), where k is the number of centroids. In the preliminary experiments,
we used randomly selected patches to compute the codebook. The final
choice was the use of 100,000 patches, because this extracts most informa-
tion from the animal dataset and has a good trade-off in computational
time when compared to a larger number of patches.

Feature Extraction: the soft assignment coding method from (Coates
et al., 2011b) is used to create the feature vectors for both training and
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testing images. The activity of each cluster given all feature vectors xt
from all patches in an image is computed using the equation:

ik(x) =
∑
t

max{0,µ(xt)− qk(xt)} (11)

where qk(xt) = ||xt − ck||2 and µ(xt) is the mean of the elements of
this distance measure over the centroids ck (Coates et al., 2011b). We
consider two spatial pooling approaches. An image is divided into four
quadrants and the activities of each cluster for each patch in a quadrant are
summed up. The spatial pooling approach that is described in Equation
11 is referred to as Sum-Pooling. While the second pooling approach,
Max-Pooling, is the computation of the maximum cluster activity given
a feature vector xt from all patches which are in an image and can be
described using the expression:

ik(x) = max
t
{max{0,µ(xt)− qk(xt)}} (12)

The patches of testing and training images are extracted using a sliding
window. Because we use a stride of 1 pixel, the window size of 9× 9 pixels
and the used image resolution is 250× 250 pixels, the method extracts
58564 patches from each image. These patches, with the initial random
patch extraction and the number of clusters are used for computing the
cluster activations using Equation 11 or Equation 12. The feature vector
size is K × 4 and since we chose K to be 600 clusters, the feature vector
of BOW has 2,400 dimensions.

Bag of Visual Words with Histogram of Oriented Gradients
(HOG-BOW): The HOG-BOW method is used to compute feature
vectors from patches based on the HOG descriptor (Dalal and Triggs,
2005). The patches are given to the Histogram of Oriented Gradients
(HOG) descriptor and the extracted feature vectors are used to calculate
the codebook as well as the cluster activities. In order to compute the
HOG feature vector (Junior et al., 2009; Takahashi et al., 2014), the HOG
descriptor divides each patch into smaller regions known as blocks, η× η.
The HOG descriptor computes two gradients (horizontal gradient hx and
vertical gradient hy) with respect to every coordinate x, y of an image
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using and a simple edge detector (kernel gradient detector) (Arróspide
et al., 2013). The gradients are computed using:

hx = W (x+ 1, y)−W (x− 1, y) (13)

hy = W (x, y+ 1)−W (x, y− 1) (14)

where W (x, y) is the intensity value of the coordinate x, y. The magnitude
A(x, y) and the orientation α(x, y) are computed as:

A(x, y) =
√
h2
x + h2

y (15)

α(x, y) = tan−1
(
hy
hx

)
(16)

The image gradient orientations within each block are weighted into a
specified number of orientation bins β, making up the histogram. Finally,
L2 normalization is applied to the sum of bin values of the HOG feature
vectors (Dalal and Triggs, 2005). In the preliminary experiments, we found
the best HOG parameters to use are 25 rectangular blocks (η = 5) and 8
orientation bins to compute the feature vectors from each patch. In the
HOG-BOW experiment the best found patch size is 15× 15 pixels. We
also modified the HOG-BOW algorithm such that it can process both
gray and color information from the patches in the used dataset. In both
BOW and HOG-BOW the color information from the patches of an image
is computed by concatenation of each of the three channels that makes up
the RGB color space for each of the extracted patches. In the same vein
as in BOW, HOG-BOW employs 600 centroids and both sum-pooling and
max-pooling were applied to the four quadrants on the codebook based on
either gray or color images in the used dataset. The HOG-BOW method
results in 2,400 dimensional feature vectors.
Finally, the final feature vector from both BOW and HOG-BOW are

fed into the regularized linear L2-SVM classifier which predicts the class
labels of the Wild-Anim images. We adopted the one-vs-all approach. In
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a linear multi-class SVM, the output zk(x) of the k-th class is computed
as:

zk(x) = wTk i(x) + bk (17)

where i(x) ∈ <n are the input vectors constructed by the BOW variants
from an image x. The linear classifier for class k is trained to output a
weight vector wk with a bias value bk.

The predicted output class label for an image x (Tang, 2013) is computed
using:

argmax
k

(zk(x)) (18)

We use the regularized L2-SVM (Fan et al., 2008) for which the primal
objective function is given by:

min
w

1
2w

Tw+C
n∑
i=1

(max (0, 1− yizk(x)))2 (19)

where yi = {1,−1}, yi = 1 if xi belongs to the target class of the k-th
classifier, and yi = −1 if xi does not belong to the target class. C is the
penalty parameter.

2.3 Find Optimal Hyperparameter
Values

The success of deep learning and machine learning, in general, depends on
so-called hyperparameters that control the learning algorithms. The exact
value of a hyperparameter has large consequences on the performance of
the algorithm. The selection of the optimal value is usually done using a
multi-dimensional grid search. For each dimension, given a minimum, a
maximum and a step size, the performance is evaluated on a validation
set. An exhaustive grid search in high-resolution parameter space is very
time-consuming. Where possible, we applied such optimization approaches,
for tuning the C parameter of the support vector machine algorithm in the
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range 2 ≤ C ≤ 512, for C = 2n, where n = {1, 2, ...9}. The best-found C
value is 16 (this dissertation, pp. 29). In other cases time and computing
resources were limited. In such a case we used optimal parameter values
found in the literature (Krizhevsky et al., 2012). It is undeniable that the
search for optimal hyperparameter values in machine learning is sensitive
and plays an important role. In autonomous machine learning, it would be
required to have a self-learning system that can optimize hyperparameters
to prevent optimizing for different datasets.

2.4 Animal Dataset and Pre-Processing
In this section our novel dataset and preprocessing steps for the experi-
ments will be described.

2.4.1 Wild-Anim Dataset

We collected a novel dataset by downloading images of animals from Flicker.
The dataset is called Wild-Anim derived from wild animals. This dataset
consists of a total of 5,000 images and consists of 5 classes, namely; Bear,
Elephant, Leopard, Lion, and Wolf. The dataset is processed by automatic
labelling and then was normalized to 250 × 250 pixels introducing slightly
anamorphic distortions. All images in this dataset are in RGB color space.
A sample of the images in the used dataset is shown in Figure. 4. After
collecting the dataset, we noticed that ImageNet also contains the same
classes.
Therefore, before carrying out our experiments we carefully examined

that there is no image overlap between our dataset and that of the ILSVRC
ImageNet dataset. So, although the ILSVRC ImageNet dataset has some
categories of images which are used in our dataset, it contains different
images. We initially trained on the entire dataset with the use of a local
feature descriptor (HOG-BOW). We recorded a good performance, but
the drawback was that it took approximately two days to complete the
computation. In order to mitigate this computational time challenge, we
used Deep-CNN which turns-out to be very viable, because it requires
less computing time to produce an outstanding result since it runs on a
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Figure 4: Samples of the images in the Wild-Anim Dataset, from left column to
right column: lion, wolf, bear, elephant and leopard.

GPU. This is evident based on the small sample experiment conducted on
a 20% subset of our dataset which contains 1000 images. We conducted
two kinds of experiments on the 1000 images; 1) On BOW variants, the
subsets are randomly partitioned into two basic entities in the ratio 0.9:0.1
for the training set and testing set, respectively. 2) In the CNN approach,
we partitioned the dataset into the ratio 0.8:0.1:0.1 for the training set,
validation set and testing set respectively. The Deep CNN techniques
use an overall computing time for the complete experiment with 5 runs
between 0.22 ≤ t ≤ 2.1 hours. Of course, this reduction is mainly caused
by the used software, where the Caffe framework uses GPU computing,
and does not imply that deep CNNs are in general faster than the BOW
method. The exact duration depends on the experimental settings of
either fine-tuned or scratched versions of the CNN architectures under
study. AlexNet is also faster than GoogleNet. For the BOW variants the
computing time for an entire experiment is between 0.65 ≤ t ≤ 26 hours.
In the experiments, five different random shuffles of this subset of 1000
images are used to carry out 5 random-fold cross validation.
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2.5 Results
All results in this section are based on 5-fold cross validation. We compute
both the mean precision and standard deviation for evaluating the test
performance of the Deep CNN architectures and the variants of BOW on
our dataset.

2.5.1 Evaluation on the Wild-Anim Dataset

The MATLAB programming platform is used to carry out experiments
with the BOW variants. We initially adopt a grid search approach to fine-
tune the C parameter in order to determine the best choice of C in the
linear L2-SVM algorithm. We finally used C = 16 for both kinds of local
feature descriptors (BOW and HOG-BOW) on our Wild-Anim dataset.
The results in Table 1 show the classification performances obtained from
the combination of L2-SVM with local feature descriptors and the results
of the deep CNN approaches on our dataset. The results show that the
BOW and HOG-BOW methods perform much worse when compared to
some scratch and all fine-tuned versions of the deep CNN techniques.

Table 1: Performances of the 16 different techniques on the Wild-Anim dataset
Methods Test Accuracy
OFT-GoogleNet (Top-1) 99.93±0.14
OFT-AlexNet (Top-1) 96.80±2.13
OS-GoogleNet (Top-1) 90.00±3.41
OS-AlexNet (Top-1) 82.40±4.92
RFT-GoogleNet (Top-1) 99.93±0.14
RFT-AlexNet (Top-1) 97.40±2.15
RS-GoogleNet (Top-1) 89.00±4.05
RS-AlexNet (Top-1) 83.40±5.84
BOW-Color with Max-Pooling 84.00±2.19
BOW-Color with Sum-Pooling 82.40±1.62
BOW-Gray with Max-Pooling 82.00±3.58
BOW-Gray with Sum-Pooling 81.40±2.24
HOG-BOW-Gray with Sum-Pooling 82.60±1.74
HOG-BOW-Gray with Max-Pooling 78.40±1.74
HOG-BOW-Color with Sum-Pooling 73.20±3.37
HOG-BOW-Color with Max-Pooling 63.60±3.01
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Figure 5: Performance evaluation of our modified versions (RFT and RS) of deep
CNN architectures and the BOW variants on 5 test sets. See Table 1
for performances of the original methods (OS and OFT).

The performances on the five different test sets obtained from the
proposed deep CNN and the BOW variants applied on our dataset are
shown in Figure 5. This figure shows that the results on different test
sets are fairly consistent. It also shows the quartile ranges between (Q1
to Q3). From the results in Table 1, it can be seen that both RFT-
GoogleNet and OFT-GoogleNet outperform every other method with a
Top-1 loss rate of 0.07%. Next to it, the best performances are obtained
with RFT-AlexNet and OFT-AlexNet with a Top-1 loss rate of 2.6% and
3.2% respectively. These results uncover the high level of performance.
Although the ImageNet dataset contains different images of animals as
those present in our dataset, the use of having more images and image
labels significantly contributes to the outstanding performances of the
pre-trained models of AlexNet and GoogleNet. The pre-trained models
provide a big advantage to the evaluation of the performances on our
dataset. One can therefore argue that the fairest results are from the
scratch versions of the GoogleNet architectures which also outperform all
the BOW methods.
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The scratch versions for both architectures obtain a Top-1 loss rate
of 10% for OS-GoogleNet and 11% for RS-GoogleNet, while the results
on the scratch AlexNet architecture are much lower. It can be seen from
Table 1 that RFT-AlexNet outperforms the OFT-AlexNet by 0.6% and the
RS-AlexNet outperforms OS-AlexNet by 1%. However, the OS-GoogleNet
outperforms the RS-GoogleNet by 1%. These differences are all not signif-
icant, however. We also expected a performance improvement in the final
accuracy of the reduced versions, since the training set is not very large.
It seems that the used dropout regularization performs very well in this
case to prevent overfitting.
The most competitive local descriptor is BOW-color with the max-

pooling strategy at 84% which outperforms OS-AlexNet by 1.6%, RS-
AlexNet by 0.6% and HOG-BOW-gray with sum-pooling. This may be
caused by a rich preservation of color image information from our animal
images with the use of BOW-color using max-pooling. However, when
we compare the performance of the best BOW variant to the (non-RS-
AlexNet) CNN results which start at 89%, its performance is much worse.
The second best local descriptor is HOG-BOW-gray with sum-pooling
which is better than the other BOW variants.

The worst performing method of our comparison is HOG-BOW-color
for both kinds of spatial pooling strategies. HOG-BOW-color obtains the
lowest performance with a high computing time between 23 < t ≤ 26
hours compared to CNN methods that use less than t ≤ 2.1 hours for the
overall computation. HOG-BOW-color with both spatial approaches is
poor in handling high color resolution feature vectors and requires lots of
computing time. From all BOW results, we can see that BOW outperforms
the HOG-BOW technique.

Also, the modified CNN architectures are competitive when compared
to the original deep CNN architectures but require less computing time.
This is evident based on the significant decrease in time by 27% and 26%
for both the fine-tuned and scratch versions of the AlexNet architectures.
There is no significant improvement in the computing time of the modified
version of the GoogleNet architecture compared to the original GoogleNet
architecture.

We further carried out an additional performance evaluation using the
reduced versions of the Deep CNN on another set of 1000 images from our
original dataset. This time all the 1000 images were used as testing set with
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10× the images present in the earlier testing set. We ensure that the new
testing set is not overlapping with images present in the previous subset
that contains 1000 images from our original dataset. This is achieved by
performing a fixed split partitioning. In our later experiments, the new
testing set is fixed and it is evaluated using 5 different train-validation
models generated based on the earlier experimental settings. We computed
the mean of 5 runs from our test evaluation, which is reported in Table 2.
The results are fairly consistent compared to the earlier results reported
in Table 1. This implies that the reduced Deep CNN architectures have
an outstanding generalization.

Table 2: Performance evaluation of reduced CNN on another test set
Methods RFT-GoogleNet RFT-AlexNet RS-GoogleNet RS-AlexNet
Test Accuracy 99.38±0.44 96.72±0.21 89.74±0.85 84.82±1.16

2.6 Discussion
In this chapter, several image recognition techniques were compared on a
novel dataset consisting of wild animals. From the results, a conclusion can
be drawn that the performance of almost all CNN architectures is much
better than the performance of the different bag-of-words techniques. The
pre-trained GoogleNet and AlexNet architectures perform exceptionally
well, but being trained on ImageNet that contains the same classes, but
different images, this does not come as a big surprise. Furthermore as seen
from the comparison of the performances of GoogleNet and AlexNet when
trained from scratch, the use of GoogleNet performs much better. It is
remarkable that the recognition accuracy is still very high even for the
relatively small dataset.
Additionally, this research demonstrated that the reduction in the

number of neurons in the last inception layer of the GoogleNet and fully
connected layers in AlexNet have shown to be competitive when compared
to the original GoogleNet and AlexNet architectures. The merit of this
approach is that it can significantly decrease the computing power usage.
In addition to the contributions to deep learning, we report that the effect
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of color on BOW with the max-pooling strategy is relatively competitive
compared to the AlexNet architecture when trained from scratch. Finally,
the BOW technique outperforms the HOG-BOW method.
Future work should involve the application of segmentation and data

augmentation techniques on the used dataset. We also want to study the
effect of different color spaces using deep learning architectures.





3ROTATION MATRIX DATA
AUGMENTATION

In deep learning, data augmentation is important to increase the amount
of training images to obtain higher classification accuracies. Most data-
augmentation methods adopt the use of the following techniques: cropping,
mirroring, color casting, scaling and rotation for creating additional train-
ing images. In this chapter, a novel data-augmentation method that
transforms an image into a new image containing multiple rotated copies
of the original image in the operational classification stage is proposed. The
proposed method creates a grid of n×n cells, in which each cell contains a
different randomly rotated image and introduces a natural background in
the newly created image. This algorithm is used for creating new training
and testing images, and enhances the amount of information in an image.
For the experiments, we created a novel dataset with aerial images of
cows and natural scene backgrounds using an unmanned aerial vehicle,
resulting in a binary classification problem. To classify the images, we
used a convolutional neural network (CNN) architecture and compared
two loss functions (Hinge loss and cross-entropy loss). Additionally, we
compare the CNN to classical feature-based techniques combined with
a k-nearest neighbor classifier or a support vector machine. The results
show that the pre-trained CNN with our proposed data-augmentation
technique yields significantly higher accuracies than all other approaches.

35
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The use of unmanned aerial vehicles (UAV) has a lot of potential
for precision agriculture as well as for livestock monitoring. A
previous study (Zhang and Kovacs, 2012) recommended that the

combination between precision agriculture and remote sensing and UAV
methods can be very beneficial for agricultural purposes. Other research
(Katsigiannis et al., 2016; Lukas et al., 2016; López-Granados et al., 2016)
has examined this area of research with the use of UAVs for different tasks.
A novel area of research is recognizing aerial imagery with the use of deep
neural networks. The study in (Lin et al., 2015) demonstrates that the use
of a convolutional neural network for ground-to-aerial localization yielded
a good performance on some datasets. Another interesting study is the
use of deep reinforcement learning for active localization of cows (Caicedo
and Lazebnik, 2015). Next to the task of localization, there exists some
recent research on the use of UAVs for motion detection and tracking
of objects. The study in (Fang et al., 2016) analysed the merits of the
use of optical flow with a coarse segmentation approach for aerial motion
detection of animals from several videos. Furthermore, in (Gonzalez et al.,
2016) the authors extended the idea of using UAVs with object detection
and tracking algorithms for monitoring wildlife animals. Another approach
is detection and tracking of humans from UAV images using local feature
extractors and support vector machines (Imamura et al., 2016).
The idea of data augmentation (DA) has been successfully applied to

UAV data as well. In (Jeon et al., 2017), the authors studied augmentation
of drone sounds using a publicly available dataset that contains several real-
life environmental sounds. Furthermore, the research in (Charalambous
and Bharath, 2016) explored the use of a DA method for training a deep
learning algorithm for recognizing gaits. Another interesting use of DA is
the development of a model for 3D pose estimation using motion capture
data (Rogez and Schmid, 2016).

Most of the previous data-augmentation techniques transform a training
image to multiple training images using techniques such as: cropping,
mirroring, color casting, scaling and rotation. In this chapter, we pro-
pose a novel data-augmentation method that transforms a single input
image to another image containing n× n rotated copies of the original
image. This method enhances the amount of information in an image,
especially if the image contains a single object like in our study (cow or
non-cow background). The aim of this chapter is to assess if this novel
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data-augmentation method leads to higher classification accuracies when
combined with different machine learning techniques such as convolu-
tional neural networks or classical feature descriptors on a novel dataset
containing aerial images of animals.

Contributions
This chapter proposes a novel data-augmentation technique that trans-
forms a train or test image into a novel single image with multiple randomly
rotated copies of the input image. To combine the different rotated images,
the proposed method puts them in a grid and adds realistic background
pixels to glue them together. This approach presents some merits: 1) It
provides more informative images which may aid to yield higher accura-
cies, 2) It does not require an increase in the number of training images
compared to other conventional data-augmentation methods, and 3) The
method can also be used to perform data augmentation on test images in
the operational stage. The utility of the proposed approach is evaluated by
using a CNN which is derived from the original GoogleNet (Szegedy et al.,
2015) architecture by keeping only several inception modules. For training
this CNN we evaluate if there are differences in using the cross-entropy
loss function (softmax classifier) compared to using a Hinge loss func-
tion. Furthermore, we compared the CNNs to several classical computer
vision techniques using original images and data-augmented images. All
techniques were used to investigate the recognition accuracies of aerial
images of cows in natural scenes, for which we created our own dataset
with an unmanned aerial vehicle. The results show that using fine-tuned
CNN models with the proposed data-augmentation technique leads to
significantly better results than all other approaches.
Outline. This chapter is organized as follows; Section 3.1 describes

the used UAV dataset and the proposed data-augmentation technique.
Section 3.2 discusses the methods used for classifying the aerial imagery.
The experimental results of the derived CNN and the classical techniques
are reported in Section 3.3. Finally, the conclusion is presented in Section
3.4.
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3.1 Dataset and Data Augmentation

3.1.1 Dataset Collection

We employed the DJI Phantom 3 Advanced Unmanned Aerial Vehicle
(UAV) for collecting video frames of cows and natural backgrounds at
different positions and orientations. An illustration of the UAV is shown
in Figure 6.

Figure 6: A photo of the UAV used for this study

We applied manual cut-outs with a fixed size of 100× 100 pixels to
obtain positive samples of images that contain a cow, while we employed
an automatic extraction of negative samples which have no presence of
cows in the image. We flew the drone three times over different fields
containing cows in order to obtain different samples. A summary of the
three subsets of the obtained images with the amount of positive and
negative samples, the video streaming time, and the amount of unique
objects is reported in Table 3.

Table 3: Statistics of video records and annotated datasets
Video ID Time (s) Unique Objects Positive Samples Negative Samples

1 Subset 1 11 10 37 225
2 Subset 2 43 82 475 2094
3 Subset 3 22 10 50 1100
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The unique objects denote cows that are recorded at different time
frames and therefore have different appearances in time. Figure 7 shows
some samples of images of our aerial dataset.

Figure 7: Sample images of the aerial dataset, showing the presence of cow
(positive samples) and non-cow (negative samples). Please note that
non-cow images are also diverse.

3.1.2 Cross-Set Splits

We used cross-set splits whereby each recorded subset is considered as
a separate fold. One subset is used for testing and the other subsets are
used for the training set. This process is repeated for the three avail-
able subsets. The classical feature descriptors combined with supervised
learning algorithms and the derived CNN technique are employed for
determining the existence of cows in the natural images. We maintain the
same dataset splits for all the experiments using the CNN and the feature
extraction techniques. The classical techniques employ two image resolu-
tions; 100× 100 and 250× 250 pixels, and for the experiments carried out
with the derived CNN we only used 250× 250 pixels.

3.1.3 Multi-Orientation Data Augmentation

We propose a new offline data-augmentation algorithm called rotation-
matrix data-augmentation (ROT-DA) that transforms an input image to
a new single image containing multiple randomly rotated versions put in
n×n cells. The use of a larger value for n leads to a new image containing
more different poses. The value of n was set to 4 in the experiments,
because using higher values of n resulted in making the cow images look
very small. An illustration of the proposed data-augmentation method
and the overall classification system using the CNN is shown in Figure 8.
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The pseudo-code in Algorithm 1 explains the various transformations of
the original image to obtain the multi-orientation image.
After inserting the images in the newly created image, background

pixels are added to glue them together. This is done by using the nearest-
neighbor pixels around the edges of the images. We will also perform
experiments with ROT-DA without rotations (ROT-DA-NR), but we do
this only for the classical feature-based techniques.

Figure 8: Block diagram illustrating the proposed method and overall system
using the CNN. The column (’:’) symbol between different layers rep-
resents the connections of neural network layers within the derived
CNN architecture. The data-augmented image on the top-left is a multi-
orientation image without padding and the image on the top-right is
the resulting multi-orientation image with padding.
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Algorithm 1 Multi-Orientation Data-Augmentation Algorithm
Input : Given images Ii(x, y) from an input directory, where x, y denote
the pixel row and column, and a grid size of n× n.

Output : The data-augmentated versions of the images.
1: procedure Construct a filelist with N images from an

input directory.
2: for each image Ii, i ∈ N do
3: Initialize the total number of cells n× n = M

4: for each image Ii, for all cells m ∈ M do
5: Define the size of the image resolution.
6: Compute a pad-size Iq = ceil((size(Ii))/2).
7: Compute a pad-array Ip using a pixel replication padding

technique, given Ii, Iq, pad value set to ’replicate’ and the pad direction
set to ’both’.

8: Rotate Ip with a random angle within the bound [1o, 180o],
this yields a new image Ir.

9: Adjust the image Ir to Ia such that undesired background
introduced during rotation is filled with artificial pixels from the
nearest-neighbor pixels.

10: Concatenate each Ia into M cells.
11: Ic = [Ia(k)...Ia(k + n− 1); ...; ...Ia(M = n2)]n×n Given

that k = 1, ∀ M cells, the ellipses (...) denote the column cells entries
containing rotated sub-images, and the semicolon (; ) in this study
represents the start of a new row. Note that each cell in the n× n grid
of cells contains a rotated copy of the input image Ia(k) in a reduced
size.

12: end for
13: Convert the cell structure of Ic into a matrix Im.
14: Resize the image Im to 250× 250 pixels.
15: Store each Im(i) into an output directory
16: end for
17: end procedure
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3.2 Image Recognition Methods

3.2.1 Three Inception Module CNN Architecture

This architecture is directly derived from the famous GoogleNet architec-
ture as proposed in (Szegedy et al., 2015). We eliminated all the layers
after the inception 4a module, except for layers which lead to the first
classifier. We do this because the problem under study is more of a binary
classification problem and the dataset is quite small. We want to know
how the reduced architecture can handle this problem compared to the
original GoogleNet. Another modification made with respect to the origi-
nal GoogleNet architecture is the use of Nesterov’s Accelerated Gradient
Descent (NAGD) rather than using the conventional stochastic gradient
descent (SGD) to update the weights in the deep neural network. The
NAGD optimization update rule (Sutskever et al., 2013) is described in
equations 20 and 21:

ui+1 = µui − αL∇L (Wi + µui) (20)

Wi+1 = Wi + ui+1 (21)

where L ∈ {Lh,Lc} is the loss function, µ is the momentum value, αL is
the learning rate, ui is the momentum variable, ∇ is the rate of change
in L, i is the iteration number and Wi denote the learnable weights. We
employed randomly initalized weights for the scratch CNN and pretrained
weights from the ImageNet dataset for the fine-tuned CNN (GoogleNet
architecture). In addition to our modification, we remark that the original
GoogleNet (in Caffe framework) uses a simple online data-augmentation
that involves cropping (with a default crop size of 224 × 224 pixels),
i.e. cutting out several patches from an input image at 5 positions (as
five in a dice), and additionally flipping (horizontal reflection) to obtain
more samples. During training of the CNN model, it automatically flips
each cropped image to double the effective dataset size. The cropping
means an act of extracting some portions from an input image. In our
customized CNNs, we considered the original and two additional crop
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sizes: 125× 125 and 250× 250 pixels. The crop size of 250× 250 implies
the single actual size of the input image. Furthermore, we evaluated flip
and non-flip conditions. All the input images to the CNN have image sizes
of 250× 250 pixels. For the ROT-DA image, each cell of the 4× 4 grid
contains a copy of the input image in a reduced size and the method fills
up empty spaces with nearest neighbor pixels.

Table 4: Three inception module convolutional neural network architecture
Layer Type Patch Size / Stride Output Size Depth Number of Convolutional Filters Blob Parameters
Conv 1 7× 7/2 112× 112× 64 1 16.06M
Max Pool 1 3× 3/2 56× 56× 64 0 4.01M
Conv 2 3× 3/2 56× 56× 192 2 0, 64, 192, 0, 0, 0 12.04M
Max Pool 2 3× 3/2 28× 28× 192 0 3.01M
Inception 3a 28× 28× 256 2 64, 96, 128, 16, 32, 32 4.01M
Inception 3b 28× 28× 480 2 128, 124, 192, 32, 96, 64 7.53M
Max Pool 3 3× 3/2 14× 14× 480 0 1.88M
Inception 4a 14× 14× 512 2 192, 96, 208, 16, 48, 64 2.01M
Average Pool 1 4× 4× 512 0 163.84K
Top Conv-1 1× 1/1 4× 4× 128 1 40.96K
FC 1 / 70% Dropout layer 1× 1× 1024 1 / 0 20.48K
FC 2 1× 1× 2 1 0.04K
Cross Entropy (Softmax) / Hinge Loss 1× 1× 2 0

The derived three inception module CNN architecture is described in
Table 4. This architecture involves the use of three inception modules
that allow the concatenation of filters of different dimensions and sizes
into a single new filter (Shin et al., 2016). In each inception module,
there exist six convolution layers and one pooling layer. Moreover, there
exist several rectifiers (ReLUs) which are placed immediately after the
convolutional and fully-connected layers. Furthermore, there exist four
pooling layers excluding those within the inception modules, two bottom
convolutional layers and one top convolutional layer which comes after
the average pooling layer. We use one top-1 loss function which employs
either the Hinge loss or the cross-entropy loss (for the Softmax classifier).
The L1-norm Hinge loss Lh used in our study can be defined as:

Lh(xi) =
1
N

N∑
i=1

K∑
k=1

(
max

(
0, 1− yki zk(xi)

))
(22)

where yki = {1,−1}, yki = 1 if xi belongs to the target class of the k-th
class output unit, and yki = −1 if xi does not belong to the target class.
The variable N denotes the total number of training images in a batch.
K accounts for the number of class labels and zk = xTw is the final
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activation of the output units. Here, x ∈ RD denote the D-dimensional
features of the previous hidden layer, and the learnable weights of the last
layer are w ∈ RD×K .
The Cross-Entropy Loss Lc used in our study is defined as:

Lc(xi) = −
1
N

N∑
i=1

yi

(
log

(
exp(zi(xi))∑K
k=1 exp(zk(xi))

))
(23)

where the yi denote the target values yi ∈ {0, 1}. The fraction within
the log accounts for the softmax activation function (Okafor et al., 2016),
which computes the probability distribution of the classes in a multi-class
classification problem. Note that in this study we are dealing with a binary
classification problem and we use 2 output units in the CNN.
The CNN under study consists of two fully connected (FC) layers:

FC 1 with a corresponding ReLU computes the hidden unit activations,
which is immediately followed by a regularization dropout of 0.7, and the
second FC 2 contains the output neurons which represent the negative
and positive class. The working operations of the CNN are well explained
in the paper (Szegedy et al., 2015).

3.2.1.1 CNN Experimental Setup
All experiments were run on the Caffe deep learning framework on a
Ge-Force GTX 960 GPU model. The used experimental parameters are
as follows: training display interval is set to 40, average loss is set to 40,
learning rate is set to 0.001, learning policy is set to step, the step size
is set to 4000 iterations, power is set to 0.5, gamma is set to 0.1, the
momentum value is set to 0.9, weight decay is set to 0.0002, and maximum
iteration is set to 10000, which generates a snapshot model after every 500
iterations (which represent a snapshot). This resulted in 20 snapshots for
the entire training process. The mentioned parameters were not altered
during all the experiments for the different model configurations. The
training images from the combination of any of the two subsets as reported
in Table 3, is further split into the ratio 80% for training and 20% for
validation. We employed a training batch size set to 20 and testing batch
size set to 5 for all experiments, but with different test iterations. The
altered parameters for the three subsets of the aerial dataset used with
their corresponding splits are described in Table 5.
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Table 5: CNN parameters and dataset split information
Parameters Subset 1 Subset 2 Subset 3
Test Images 262(∼ 7%) 2569(∼ 65%) 1150(∼ 29%)

Training Images 2975(∼ 74%) 1129(∼ 28%) 2264(∼ 57%)

Validation Images 744(∼ 19%) 283(∼ 7%) 567(∼ 14%)

Total Images 3981(100%) 3981(100%) 3981(100%)

Solver Test Iteration (Val/Train) 148 56 113
Test Iterations for Evaluation 52 514 230

We first performed experiments with both the original and our derived
CNN trained from scratch on the original images. The preliminary results
show that our proposed architecture requires less memory usage and
a decrease in training computing time. This is summarized in Table
6. Additionally, our architecture obtains a similar level of performance
compared to the original CNN.

Table 6: Preliminary experiment using original and our proposed CNN on three
cross splits of the aerial image dataset

Evaluation/Methods Derived CNN, NAGD Original CNN, NAGD
Time (min) 25.1 ≤ t ≤ 26.8 63.2 ≤ t ≤ 69.1
Memory Usage (MB) 752 1079
Average Validation % 99.94 99.94
Average Test % 97.87 97.71
Time Improvement % 61.3 (decrease) -

3.2.2 Classical Features Combined with Supervised
Learning Algorithms

In this subsection, we describe the three feature extraction techniques
which we use and combine with the k-nearest neighbor classifier and
the support vector machine (SVM) with a linear kernel or a radial basis
function (RBF) kernel.
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3.2.2.1 Color Histogram
The color histogram (Color-Hist) is a feature extraction technique that
analyses the pixel color values within an image. For this, the pixel color
values of an image which exist as RGB (Red, Green and Blue) are first
transformed to HSV (Hue, Saturation, and Value). After that, the value of
each pixel in a channel is put in a histogram consisting of different bins. In
the experiments, only the saturation channel with a bin size of 32 is used,
because it obtained the best performance in preliminary experiments. The
resulting feature vector containing 32 values is given to the supervised
learning algorithms.

3.2.2.2 Histogram of Oriented Gradients
The histogram of oriented gradients (HOG) (Dalal and Triggs, 2005)
feature descriptor analyses patches (local regions) from an image. Then
histograms are constructed based on the occurrences of orientation gradi-
ents within the patches. The HOG descriptor can process gray or color
image information. In this study, we only considered the gray option. The
procedure for constructing the HOG is as follows: convert the color images
of the aerial imagery into grayscale, then compute the gradients with two
gradient kernels to compute the gradient values for each pixel from the
grayscale image. The gradients for each pixel within a small block (cell)
are put in bins (Junior et al., 2009; Takahashi et al., 2014), where each
bin defines a specific orientation range. The following parameters were
used, because they worked best in preliminary experiments: a grid of 2× 2
blocks is used, where each block is split into 2× 2 cells. The number of
orientation bins is set to 4. This results in a feature dimension size of 64.
This feature vector is fed as input to the supervised learning algorithms.

3.2.2.3 The Combination of HOG and the Color
Histogram

In this technique, the features from both the HOG and Color-Hist are
combined to form the HOG-Color-Hist feature descriptor. The features
from both HOG and Color-Hist are first computed separately. The optimal
parameters used for HOG in the combined feature are different from the
HOG descriptor alone, because they gave slightly better results in the
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preliminary experiments. The HOG parameters used in this technique use
32× 32 pixels per cell, for which we used 9 cells in total from 100× 100
pixel images with a single block. The number of orientation bins is set
to 4 and the final feature dimensionality is 36. We used the hue channel
from the color-histogram with 32 bins. These features are normalized and
concatenated to obtain the final feature vector with 68 elements.
Several experiments were conducted to determine the best choice of

parameters for the used classifiers with the different classical feature
descriptors. For the K parameter in K-nearest neighbor (KNN) we tried
K = {1, 2, 3, 4, 5, 10}. The C parameter of the linear SVM is set to
C = 2q−1, with the explored values q ∈ {1, 2, ..., 19}. For the SVM
with the RBF kernel, we tried C = {1, 2, 3, 5} with γ = 10p−1, where
p ∈ {1, 2, ..., 4}. The optimal parameters used for each of the classifiers are
reported in Table 7. All the algorithms used for the classical techniques
were developed in Python.

Table 7: Best found parameters used for the various classifiers with the classical
feature descriptors

Classical Techniques RBF-SVM Linear SVM K-NN
HOG C = 3, γ = 1000 C = 8 K = 1
Color-Hist C = 1, γ = 100 C = 8192 K = 3
HOG-Color-Hist C = 1, γ = 100 C = 256 K = 3

3.3 Results
To compute the average results of the different subsets of this dataset, we
compute the weighted average accuracy, which is computed by summing
over the relative testing dataset sizes multiplied with the average accuracies
on the testing datasets. The weighted mean can be computed using
the expression: Tm =

∑S
s=1 WsTs∑S

s=1 Ws
, where Tm denotes the weighted mean

test accuracies, Ws denote the weights, which represent the number of
individual images per test subset Ws = {262, 2569, 1150}, and Ts are the
test accuracies for the various subsets, with S = 3.
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3.3.1 Evaluation of the CNN Architecture

In our preliminary studies, we carried out experiments on the data-
augmentation (ROT-DA) version of our dataset to determine the optimal
crop size. We used models generated from the train-validation experiments
for evaluating our test sets. We initially employed the scratch CNN with
the cross-entropy classification loss, which is combined with or without
flipping and with different crop sizes: 125× 125, 224× 224, and 250× 250.
The results of these experiments are shown in Figure 9a, and suggest that
the optimal method uses a crop size of 224× 224 pixels with flipping.
This yields an accuracy of 98.18% that occurred at the 5th snapshot.
We observed in general that there exist marginal differences between the
various settings.

Based on this outcome, we used the best crop size with flip settings to
carry out the experiments using the scratch and fine-tuned versions of
the CNN. For this, we used both the data-augmented dataset (ROT-DA)
and the original (ORIG) images. The validation results from Figure 9b
show that the scratch and the fine-tuned CNN applied on the two kinds
of images converge to a near maximum level of performance. The reason
for this lies in the fact that most of the validation images contain similar
objects as in the training set. The validation results at the 5th snapshot are
reported in Table 8. From the table, we can see that the use of the original
dataset leads to more overfitting. The results of the different CNNs with
the cross-entropy loss function are shown in Figure 9c. From this figure
we can observe that the best obtained test accuracy is obtained by the
fine-tuned CNN applied on the ROT-DA images in the 2nd snapshot. We
further investigated the CNN with the L1 Hinge Loss, using the earlier
mentioned CNN settings (scratch and fine-tuned versions) applied on the
two sets of images (ROT-DA and ORIG). The results obtained are shown
in Figure 9d.
Based on the performances recorded during this preliminary investiga-

tion, we only compared results obtained at the 5th snapshot as reported
in Table 8. The results show that the fine-tuned CNN trained on the
data-augmented images yields higher test classification accuracies when
compared to the fine-tuned CNN trained on the original images of the
dataset. We compared the different approaches using the binomial distri-
bution of correctly classifying test images. The results show that the
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Figure 9: Weighted mean classification accuracy on the Aerial UAV Dataset while
training for 10, 000 iterations (20 snapshots); where (a) Preliminary
test performance using scratch CNN with cross-entropy loss (softmax
classifier) applied on ROT-DA alone using different crop sizes (CS),
with and without flips. (b) Validation set evaluation of the CNN with
cross entropy loss (CE-L) and Hinge Loss (H-L) using a crop size of
224× 224 and flip. The ROT-DA means the augmented dataset and
ORIG means the originally up-scaled images. The FT means Fine-tuned
and Scr means Scratch. (c) Test evaluation of the CNN with CE loss
using a crop size of 224× 224 and flip, and (d) Test evaluation of the
CNN with L1-Norm Hinge Loss using a crop size of 224× 224 and flip.

fine-tuned CNN trained on the data-augmented images yields signifi-
cantly higher classification accuracies (p < 0.01) when compared to the
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fine-tuned CNN trained on the original images of the dataset. Overall,
the fine-tuned CNNs obtain the best results and combined with the data-
augmented images, the results are very good (99.65%). Finally, the results
show that overall the use of the cross-entropy loss function leads to better
results than the use of the Hinge loss function.

Table 8: Weighted mean of the test and validation classification accuracies of the
CNN applied on the aerial imagery dataset after 5 snapshots
Evaluation Method Cross Entropy Loss Hinge Loss
Test Fine-tuned CNN, ROT-DA 99.65 99.65

Fine-tuned CNN, ORIG 98.67 98.19
Scratch CNN, ROT-DA 98.18 96.16
Scratch CNN, ORIG 97.87 97.51

Validation Fine-tuned CNN, ROT-DA 99.94 99.94
Fine-tuned CNN, ORIG 100.00 100.00
Scratch CNN, ROT-DA 99.68 99.81
Scratch CNN, ORIG 99.94 99.94

3.3.2 Evaluation of Classical Descriptors

The weighted mean test accuracies of the classical techniques on the
aerial imagery dataset are reported in Table 9. We observe that the RBF-
SVM outperforms the other two classifiers (K-NN and linear SVM) when
combined with each of the feature descriptors. Another observation is
that the classifiers with the Color-Hist or HOG-Color-Hist features yield
better performances than using the HOG descriptor alone. This shows
the importance of using color information for this classification problem.
Still, the results are significantly worse than the results using the CNN
methods.
Table 9 also shows the results of using the RBF-SVM with different

datasets and different feature descriptors using larger images (250× 250
pixels). The results show that here data-augmentation does not lead to
significantly better results. This can be explained by the fact that the
best feature descriptor, the color histogram, is not affected by this data-
augmentation method. Finally, we note that the original image with the
smaller 100× 100 resolution works better for the HOG feature descriptor
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and therefore also for HOG combined with the color histogram. This can
be explained by the fact that we optimized the HOG parameters using
the smaller images.
Although the performances of the CNN techniques are much better,

the classical techniques have a lower training computing time: t ≤ 1 min.
This is because of the low dimensionality of the extracted features and
the low number of trainable parameters.

Table 9: Summary of the weighted mean test performances for all CNNs and
classical methods on our dataset. Note that each of the subsets (Sub 1,
Sub 2, or Sub 3) represents the test results.

Methods Sub 1 Sub 2 Sub 3 Weighted Mean
Fine-tuned-CNN, ROT-DA, Cross Entropy Loss 100.00 99.73 99.39 99.65
Fine-tuned-CNN, ROT-DA, Hinge Loss 99.62 99.77 99.39 99.65
Fine-tuned-CNN, ORIG, Cross Entropy Loss 99.62 98.29 99.30 98.67
Fine-tuned-CNN, ORIG, Hinge Loss 99.62 97.55 99.30 98.19
Scratch-CNN, ROT-DA, Cross Entropy Loss 98.23 98.72 96.96 98.18
Scratch-CNN, ROT-DA, Hinge Loss 98.08 96.19 95.65 96.16
Scratch-CNN, ORIG, Cross Entropy Loss 98.85 99.34 94.35 97.87
Scratch-CNN, ORIG, Hinge Loss 97.69 98.83 94.52 97.51
RBF-SVM-HOG, ORIG-100×100 96.56 86.99 95.30 90.02
RBF-SVM-Color-Hist, ORIG-100×100 96.56 96.07 96.87 96.33
RBF-SVM-HOG-Color-Hist, ORIG-100×100 96.56 96.11 96.69 96.31
Linear-SVM-HOG, ORIG-100×100 85.88 81.51 95.65 85.88
Linear-SVM-Color-Hist, ORIG-100×100 96.95 93.77 95.83 94.57
Linear-SVM-HOG-Color-Hist, ORIG-100×100 95.80 94.08 93.74 94.09
KNN-HOG, ORIG-100×100 88.17 84.35 96.78 88.19
KNN-Color-Hist, ORIG-100×100 96.56 96.50 94.86 96.03
KNN-HOG-Color-Hist, ORIG-100×100 96.95 96.46 94.78 96.01
RBF-SVM-HOG, ORIG-250×250 85.88 81.51 95.65 85.88
RBF-SVM-Color-Hist, ORIG-250×250 96.57 95.37 96.52 95.78
RBF-SVM-HOG-Color-Hist, ORIG-250×250 85.88 81.51 95.65 85.88
RBF-SVM-HOG, ROT-DA-250×250 85.88 81.51 95.65 85.88
RBF-SVM-Color-Hist, ROT-DA-250×250 96.18 95.25 96.70 95.73
RBF-SVM-HOG-Color-Hist, ROT-DA-250×250 95.04 93.97 96.08 94.65
RBF-SVM-HOG-ROT-DA-NR-250×250 94.66 81.51 86.61 83.84
RBF-SVM-Color-Hist-ROT-DA-NR-250×250 96.56 95.13 96.43 95.60
RBF-SVM-HOG-Color-Hist-ROT-DA-NR-250×250 95.04 91.98 96.43 93.47
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3.4 Remarks
We developed a novel data-augmentation method that transforms an
image into a new image containing multiple random transformations of the
image. The new augmentation method does not lead to an increase in the
number of training images compared to previously used data-augmentation
techniques. We evaluated this method with deep neural networks and
feature descriptors combined with supervised learning algorithms on a
new dataset of aerial images of cows.

Our study shows that the use of the data-augmented images leads to the
best performances when combined with fine-tuned CNNs. Furthermore,
the results show that all CNN approaches significantly outperform the
classical approaches with or without the use of data augmentation. The
performances of the scratch CNNs are worse than the accuracies of the
fine-tuned CNNs with data-augmented images which obtain an accuracy
of 99.65%. Furthermore, the RBF-SVM yields better classification perfor-
mances than the K-NN and a linear SVM when combined with the used
feature descriptors. It should be noted that our DA algorithm is useful for
the CNNs, because although the used CNNs are more or less translational
invariant, they are not rotational invariant.

The idea of our data-augmentation method can be extended by including
different techniques to create new images such as color casting with dif-
ferent illumination effects. Furthermore, the proposed data-augmentation
technique can also be combined with other data-augmentation methods
to create more training images, which may be useful when dealing with
small datasets.





4UNIF ICATION OF ROTATION
MATRIX AND COLOR
CONSTANCY

This chapter addresses the enhancement of images and the problem of
over-fitting when training CNN on image classification. We investigate the
use of deep learning to assess the classification performance of the rotation-
matrix data augmentation combined with color constancy versions of the
datasets. For the color constancy methods, we use two well-known retinex
techniques: the multi-scale retinex and the multi-scale retinex with color
restoration for enhancing both original (ORIG) and rotation-matrix (ROT)
images. We perform experiments on three datasets containing images of
animals, from which the first dataset is collected by us and contains aerial
images of cows or non-cow backgrounds. To classify the images in the three
dataset, we use a convolutional neural network (CNN) architecture with
cross-entropy loss. This method is used to examine the color-constancy-
DA variants, ORIG and ROT-DA alone for three datasets (Aerial UAV,
Bird-600 and Croatia fish). The results show that the rotation-matrix
DA is very helpful for the Aerial UAV dataset. Furthermore, the color-
constancy DA is helpful for the Bird-600 dataset. Finally, the results show
that the finetuned CNNs significantly outperform the CNNs trained from
scratch on the Croatia fish and the Bird-600 datasets, and obtain very
high accuracies on the Aerial UAV and the Bird-600 datasets.

55
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This chapter was published in:

Okafor, E., Schomaker, L.R.B., and Wiering, M.A. (2018). An Analysis of
Rotation-Matrix and Color Constancy Data Augmentation in Classifying Images of
Animals. Journal of Information and Telecommunication, ISSN 2475-1839, Vol 2: 4,
pages 465-491.
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Data augmentation has often been used in deep learning to increase
the number of training images to obtain high classification accu-
racies. Previous approaches to data augmentation use cropping,

rotation, illumination, scaling, and color casting for creating more training
images. A recent research by Pawara et al. (2017) examined the classi-
fication performances of two CNN methods (AlexNet and GoogleNet)
with several data-augmentation techniques for different plant datasets.
This research investigates the rotation-matrix and color-constancy algo-
rithms as methods for data-augmentation with the objective to use one or
more machine learning algorithms to classify images within three animal
datasets.

Some researches have considered rotating plant images in different angu-
lar positions while the effect of white or zero pixel values introduced during
rotation of the images were not discussed (Pawara et al., 2017; Ghazi et al.,
2017), however, their research show that data-augmentation techniques
can be used to reduce overfitting and improve the overall performance
of the CNN models. Additionally the research by Sladojevic et al. (2016)
attempts to develop a plant disease recognition CNN model with three
image transformation techniques: affine, perspective, and rotation.
In contrast to the rotation technique as mentioned above, the idea of

color constancy algorithms has widely been studied in image processing and
computer vision as a method for enhancing the quality of an image while
preserving the color information of an object under varying illumination
conditions. The research works by Rahman et al. (1996); Jobson et al.
(1997) have proposed a multi-scale retinex (MSR) method, which has the
prowess to achieve excellent color rendition and dynamic range compression
as opposed to their previous works on the single scale retinex (SSR). An
improvement was made in the MSR by the authors in (Rahman et al.,
2004), who incorporated color restoration to produce a multi-scale retinex
for color restoration (MSRCR). Several improvements have been made on
MSR to produce variants of the MSR algorithm. One of such methods
is the combination of MSR with chromaticity preservation (Petro et al.,
2014). Another modification on the MSR is the incorporation of the
Autolevel algorithm that removes outliers, and improves the contrast level
within an image, and shows computational improvements when used with
a graphical processing unit (Jiang et al., 2015).
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However, the unification of color constancy and rotation matrix algo-
rithms as a method of data augmentation has received limited attention.
This chapter extends the research in (Okafor et al., 2017) by considering
the proposed n× n rotation algorithm together with color-constancy tech-
niques as methods of data augmentation. The proposed techniques are
examined on two animal datasets (Croatia fish (Jaeger et al., 2015) and
Bird-600 (Lazebnik et al., 2005)) and an aerial image dataset collected
using an unmanned aerial vehicle (UAV) (Okafor et al., 2017).

Most of the previous data-augmentation techniques transform a training
image to multiple training images using techniques such as: cropping, con-
trast, illumination, mirroring, color casting, scaling and rotation. In this
chapter, we extend the data-augmentation method proposed in (Okafor
et al., 2017) that transforms a single input image to another image contain-
ing n× n rotated copies of the original image. This method enhances the
amount of information in an image. Additionally, this chapter investigates
the use of two well-known color-constancy methods (MSR and MSRCR)
for creating more samples of both original and rotation-matrix versions
of three datasets: Aerial UAV (Okafor et al., 2017), Croatia Fish (Jaeger
et al., 2015), and Bird-600 (Lazebnik et al., 2005). The objective of this
chapter is to use convolutional neural networks to assess the classification
performance on several variants of the used datasets.

Contributions
This chapter investigates the use of well-known color-constancy techniques
(MSR and MSRCR) for creating new image samples of both original
(ORIG) and the new rotation-matrix (ROT) images on three datasets:
UAV aerial images, Croatia Fish (Jaeger et al., 2015), and Bird-600
(Lazebnik et al., 2005), with the aim to increase the amount of training
image samples. This approach enhances the color information of the images
which could be very useful to get higher classification accuracies with
the CNN. We train the CNN with the cross-entropy loss function and
compare the classification performances of the color-constancy-DA (with
ORIG/ROT), ORIG alone, and ROT-DA alone on three datasets. The
study also considers two broad forms of DA based on their increase (color-
constancy-DA) or no increase (ROT-DA alone) in the amount of training
images.
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The results show that the finetuned CNN with an appropriate selection
of the grid resolution and angular bounds for the rotation algorithm
combined with color-constancy methods yields the highest classification
accuracies on most of the used datasets. Moreover, the results show that
using finetuned CNN models with the proposed data-augmentation (ROT-
DA) technique on the Aerial UAV images leads to significantly better
results than all other approaches. Finally, the results of our proposed
approaches to data augmentation combined with the fine-tuned CNN
significantly surpass previous results on the Bird-600 dataset (Lazebnik
et al., 2005).
Outline. This chapter is organized as follows; Section 4.1 describes the

used datasets and the proposed data-augmentation techniques. Section
4.2 discusses the methods used for classifying the Aerial UAV dataset and
two other animal datasets. Section 4.3 describes the CNN experimental
setups and the results obtained from the various classification methods on
the used datasets. Finally, the conclusion is presented in Section 4.4

4.1 Dataset and Data Augmentation
This section provides the descriptions of the used datasets and the data-
augmentation techniques.

4.1.1 Datasets

4.1.1.1 Aerial UAV Dataset
The description of the Aerial UAV dataset is previously explained in
section 3.1.1.

4.1.1.2 Croatian Fish Dataset
This dataset was originally presented in (Jaeger et al., 2015). It contains a
total of 794 images and has 12 classes with a non-uniform distribution of
the images per class. The authors reported an accuracy of 66.78% in their
study using a CNN combined with a linear SVM classifier. We adopted a
different split in our experiment because of the imbalance of the image
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samples within the various classes. We ensured that approximately half of
the image samples were kept aside as test sets. Figure 10 shows sample
images of this dataset for each of the classes.

Figure 10: Sample images of the Croatia fish dataset showing each of the fish
species (each column): Chromis_chromis, Coris_julis_female,
Coris_julis_male, Diplodus_annularis, Diplodus_vulgaris,
Oblada_melanura, Sarpa_salpa, Serranus_scriba, Spicara_maena,
Spondyliosoma_cantharus, Symphodus_melanocercus, and
Symphodus_tinca (Jaeger et al., 2015).

4.1.1.3 Bird-600 Dataset
This dataset was originally presented in (Lazebnik et al., 2005). The dataset
contains a total of 600 images and has six classes with 100 individual image
samples per class. We adopted a similar dataset distribution by keeping
50% of the total image samples as test set as reported in (Lazebnik et al.,
2005) in our experiments. The authors reported an accuracy of 92.33% in
their study by using a probabilistic part-based method for texture and
object recognition. Figure 11 shows sample images of this dataset for each
of the classes.

4.1.2 Data Augmentation Techniques

4.1.2.1 Multi-Orientation Data Augmentation
We propose a new offline data-augmentation algorithm called ROT-DA
that transforms an input image to a new single image containing multiple
randomly rotated versions put in n× n cells. The use of a larger value for
n leads to a new image containing more different poses. For the Aerial
UAV dataset, the value of n was set to 4 in the experiments, because
using higher values of n resulted in making the cow images look very
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Figure 11: Sample images of the Bird-600 dataset for each of the bird species
(each column): egret, mandarin, owl, puffin, toucan and wood_duck
(Lazebnik et al., 2005).

small. On the other two animal datasets, we set n = {2, 4} for Croatia fish
while for the Bird-600, we set the value n = {1, 2}. An illustration of the
proposed data-augmentation method and the overall classification system
using the CNN is shown in Figure 8. The pseudo-code in Algorithm 1
explains the various transformations of the original image to obtain the
multi-orientation image.

4.1.2.2 Color Constancy Data Augmentation
Color constancy is the perception of an object which ensures that perceived
colors of objects remain relatively constant under various variations in
illumination conditions. This area of study has found relevance in image
processing and computer vision. Color constancy uses contrast/lightness
enhancement and color rendition for improving the quality of an image.
Most color-constancy algorithms use the retinex theory. The idea of the
retinex theory was proposed initially by (Land and McCann, 1971). The
research by Provenzi et al. (2005) provided the basis for understanding the
retinex algorithm from a mathematical standpoint. Our study examines
two kinds of multiscale retinex algorithms.

1. Multi-Scale Retinex (MSR): This algorithm was proposed by (Rah-
man et al., 1996, 2004). The algorithm provides a trade-off between



62 unification of rotation matrix and color constancy

color rendition and local dynamic range (Petro et al., 2014). MSR
computes the weighted sum of the outputs from various single scale
retinex (SSR). According to Jobson et al. (1997), an MSR image can
be computed as:

fmsrk
(x, y) =

M∑
m=1

Wmfmk
(x, y) (24)

fmk
(x, y) = log(Ik(x, y))− log

 ∑
(x,y)

Cmexp

[
−(x2 + y2)

2σ2
m

]
Ik(x, y)


(25)

where fmk
is the single scale retinex output for M scales, Wm denote

the weights for each scale variable, Wm = 1
3 , the maximum number

of scales is M = 3 because the number of the RGB image channels
is equal to the number of scales, Cm represents the normalization
factor, and Ik(x, y) denotes the image pixel coordinates for a given
color band k. The σm ∈ {15, 80, 250} are the standard deviations of
the Gaussians for each of the scales. We adopted the same parameters
as used by Jobson et al. (1997); Petro et al. (2014), because they
also perform well in our study. Furthermore, we further computed
the fmsrk

(x, y) by using the mathematical expression proposed by
Moore et al. (1991), where each color channel is modified by the
absolute minimum and maximum of the RGB color channels. This
can be computed as:

fmsrk
(x, y) = 255

fmsrk
(x, y)−mink(min(x,y)fmsrk

(x, y))
maxk(max(x,y)fmsrk

(x, y))−mink(min(x,y)fmsrk
(x, y))
(26)

2. Multi-Scale Retinex with Color Restoration (MSRCR): (Jobson et al.,
1997; Rahman et al., 2004) initially proposed the MSRCR algorithm.
An MSRCR image fmsrcrk

can be computed by the product of color
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restoration functions Ck of the chromaticity and the MSR outputs.
The modified version of the MSRCR fmsrcrk

(x, y) from the research
by Petro et al. (2014), can be computed as:

fmsrcrk
(x, y) = λ (Ck(x, y)fmsrk

(x, y) + β) (27)

Ck(x, y) = log

[
α

(
Ik(x, y)∑K
k=1 Ik(x, y)

)]
(28)

where α controls the strength of the non-linearity and λ is a constant.
For the MSRCR experiment α is set to 125 while λ is set to 0.8 and
K represent the total number of spectral bands (K = 3) while β is
set to 46.

Proposed Color-Constancy Data Augmentation: This study examines
the possibility of using the original or rotation-matrix images that
are fed as input to the MSR or MSRCR algorithm. This process
can also be done vice-versa by creating the color-constancy images
and then pass them as inputs to the rotation-matrix algorithm.
The new images are then combined with either original or rotation-
matrix images to obtain either double or three times the effective
size of the initial train-validation image dataset. Please note by three
times, we mean combining ORIG+MSRCR-ORIG+MSR-ORIG or
ROT+MSRCR-ROT+MSR-ROT. We carried out experiments using
two animal datasets and the UAV dataset. Some samples of both
the original and rotation-matrix images with and without color con-
stancy are shown in Figure 12, Figure 13, and Figure 14 for the Aerial
UAV dataset, Croatia fish dataset, and Bird-600 dataset respectively.

We carried out some considerations to the rotational bounds for the
ROT-DA alone or color constancy DA with ROT images on the
three datasets.
a) For the Aerial UAV and Croatia Fish datasets irrespective of

the order of the grid cells, we used a rotational angle in the
range [1o, 180o].
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b) For the Bird-600 experiments, we considered two rotational
conditions for 2× 2-ROT-DA which we defined in two versions;
i. Version 1 (V1): the rotational angles for different image

poses lie in the bound [1o, 180o]. This computation was
carried out on 2× 2-ROT-DA alone and color-constancy
DA with 2× 2-ROT images separately.

ii. Version 2 (V2): the rotational angles for different image
poses lie in the bound [−15o, 15o] and we exempted angle
0o in our computation; this is because we do not want to
have the existence of the original image twice in the new
DA variants. This computation was carried out only on the
color constancy DA with 2× 2-ROT images.

c) On the Bird-600 experiments, we also considered the color
constancy DA with 1× 1-ROT which used the same angular
rotation bounds as in V2. This setup can be seen as a combined
DA method of rotation and color constancy.

Figure 12: Examples of the original and rotation-matrix DA (ROT-DA) images
from the Aerial UAV dataset, the first row accounts for the original
images (column 1 - 4) and ROT-DA images (column 5 - 8) without
color constancy. The second and the third rows are the MSR and
MSRCR versions for both the ORIG and ROT-DA images respectively.
Our proposed rotation matrix algorithm eliminates zero pixel values
generated due to rotation by filling it with nearest neighbor pixels.
The color constancy algorithm shows enhancement in the illumination
and light intensities for each of the image samples.
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Figure 13: Examples of the original and rotation-matrix DA (ROT-DA) images
from the Croatian fish dataset (Jaeger et al., 2015), the first row
accounts for the original images (column 1 - 4) and ROT-DA images
(column 5 - 8) without color constancy. The second and the third
rows are the MSR and MSRCR versions for both the ORIG and
ROT-DA images respectively. The color constancy algorithms also
show improvement in the image resolution compared to the original
image samples.

Figure 14: Examples of the original and rotation-matrix DA (ROT-DA) images,
the first row accounts for the original images (column 1 - 3), 2× 2-
ROT-DA images using V1 rotation condition (column 4 - 6), 2× 2-
ROT-DA images using V2 rotation condition (column 7 - 8) and
1× 1-ROT-DA images using V2 rotation condition (column 9 - 10)
all mentioned without color constancy. The second and the third rows
are the MSR and MSRCR versions for both the ORIG and ROT-DA
images respectively.
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4.2 Image Recognition Methods

4.2.1 CNN Architecture

The architecture used in this section is similar to that described in Section
3.2.1. The used network is directly derived from the famous GoogleNet
architecture as proposed in (Szegedy et al., 2015). We eliminated all the
layers after the inception 4a module, except for layers which lead to the
first classifier and this is because the used datasets contain few classes
(2, 6, and 12) for the Aerial UAV, Bird-600 and Croatia fish datasets
respectively. Hence, we want to know how the reduced architecture can
handle these problems.

4.2.2 CNN Experimental Setup

In this subsection, we explain the experimental setups used for each of
the datasets.

4.2.2.1 CNN Experimental Setup for the Aerial UAV
Dataset

In this dataset, the effective sizes of the train-validation sets of the variants
of color-constancy-DA images in either original or rotation-matrix form
are increased to double or three times the original dataset size for the
different subsets of this dataset. The new versions of the datasets result in
a slight modification of the CNN training parameters: changes in the solver
test iterations (validation / train) for the respective datasets are detailed
in Table 10. The table also shows the dataset distribution. Moreover, we
employed similar experimental settings as explained before in 3.2.1.1. We
remark that the test iterations for the three test sets that exist in either
ORIG or ROT-DA alone were kept constant with the aim to examine the
effectiveness of the new CNN models. Please note that we separated the
rotation-matrix and original versions of the test sets before applying color
constancy only on the train-validation sets.
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Table 10: Dataset split information. For the Aerial UAV dataset the first four
DA methods construct a dataset two times larger than the original
dataset for all subfolds. STI means solver test iterations.

Dataset Dataset Variants Sub Train Val Test STI
UAV ROT+MSR-ROT-DA Sub 1 5950 1488 262 297

ROT+MSRCR-ROT-DA Sub 2 2259 565 2569 113
ORIG+MSR-ORIG-DA Sub 3 4529 1133 1150 226

ORIG+MSRCR-ORIG-DA
ROT+MSRCR-ROT+MSR-ROT-DA Sub 1 8925 2232 262 446

ORIG+MSRCR-ORIG+MSR-ORIG-DA Sub 2 3388 848 2569 169
Sub 3 6793 1700 1150 340

Bird ORIG, ROT-DA 5 folds 270 30 300 30
ROT+MSRCR-ROT+MSR-ROT-DA 5 folds 810 90 300 90

ORIG+MSRCR-ORIG+MSR-ORIG-DA 5 folds 810 90 300 90
Fish ORIG, ROT-DA 5 folds 240 160 394 20

ROT+MSRCR-ROT+MSR-ROT-DA 5 folds 720 480 394 60
ORIG+MSRCR-ORIG+MSR-ORIG-DA 5 folds 720 480 394 60

4.2.2.2 CNN Experimental Setup for Croatia Fish
Dataset

In this dataset, we investigated the ORIG and ROT-DA dataset alone, and
color-constancy-DA of ORIG and ROT-DA separately. Moreover, we also
studied the impact of grid resolution on the ROT-DA; this means we used
4× 4 and 2× 2 ROT-DA images in our experiments separately. Similar
CNN experimental settings as described in subsection 4.2.2.1 were used.
The additional modifications to the proposed CNN include; the batch size
for training, validation, and testing is set to 12/8/1 respectively. The
training of each of the CNN models uses maximum iterations of 7200,
which generates a snapshot at each interval of 720 iterations, the step-size
is set to 3600. This results in a decrease in the learning rate to 1

10
th times

the base learning rate of 0.001. For the ORIG and ROT-DA alone we
set the test interval to 240 while for the color-constancy DA versions
(ORIG/ROT-DA) it is set to 720. The dataset variants were shuffled
based on five-fold cross-validation with five different test sets ensuring no
overlap exists in the train-validation sets. Please note that we separated
the rotation-matrix and original versions of the test sets before applying
color constancy only on the train-validation sets. The dataset distributions
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are detailed in Table 10.

4.2.2.3 CNN Experimental Setup for Bird-600 Dataset
In this dataset, we investigated the ORIG and ROT-DA alone, and
color-constancy-DA of ORIG and ROT-DA separately. Our preliminary
experiments suggest that the 2× 2 ROT-DA yields better performances
as compared to the larger 4× 4 grid. This informed our choice of this grid,
so we will use smaller grids for this dataset. A similar CNN experimental
setup as described in subsection 4.2.2.1 is used. The additional modification
to the proposed CNN include; the batch size for training, validation, and
testing is set to 9/1/1 respectively. The training of each of the CNN
models uses maximum iterations of 8100, which creates a snapshot at
each interval of 810 iterations, the step-size is set to 4000. We used a base
learning rate of 0.001. For the ORIG and ROT-DA alone we set the test
interval to 270 while for the color-constancy-DA versions (ORIG/ROT-
DA) it is set to 810. Similarly, the various dataset variants were shuffled
based on five-fold cross-validation with five different test sets ensuring no
overlap exists in the train-validation set. Please note that we separated the
rotation-matrix and original versions of the test sets before applying color
constancy only on the train-validation sets. The dataset distributions are
detailed in Table 10.

4.3 Results
This section entails the discussion of the classification performances on
the used datasets.

4.3.1 Results on the Aerial UAV Dataset

The CNN training computing time on the color-constancy DA variants
for the different subsets is t ≤ 46 min. We used the same approach
of computing the weighted mean of the accuracies for the 3 subsets as
reported before. The sub-figures in Figure 15 shows the learning curves
for both training and testing on the color-constancy-DA variants of ORIG
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and ROT images respectively. From Figure 15a and Figure 15b, we observe
that CNN validation accuracies of the color-constancy-DA methods yield
very similar performances for both finetuned and scratch experiments.
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(a) Validation evaluation of the finetuned CNN
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(b) Validation evaluation of the scratch CNN
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(c) Test evaluation of the finetuned CNN
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(d) Test evaluation of the scratch CNN

Figure 15: Weighted mean classification accuracy on the Aerial UAV Dataset
(different color-constancy DA approaches) while training for 10K
iterations (20 snapshots) using CNN with cross entropy loss function.
Please note that not all graphs are visible due to overlap.

From Figure 15c, we observe that the use of finetuned CNN on the
ROT-MSRCR-ROT+MSR-ROT-DA attained a peak accuracy of ∼ 99.5%
at the 4th snapshot while that of finetuned CNN on the ORIG+MSRCR-
ORIG+MSR-ORIG obtained ∼ 99.06% at the 5th snapshot. In both
approaches, the performances reduce for longer iterations; this suggests
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that early stopping will be most appropriate for these methods. The
validation performance in Figure 15a, shows that most of the techniques
examined were stable after the 7th snapshot (3.5K iterations). Hence we
choose this iteration point as the basis of our comparison. A summary
of the validation and the test accuracies is reported in Table 11. Overall,
the finetuned CNN applied on ROT+MSR-ROT-DA yields a very good
performance for almost all iterative points of evaluation.

In this dataset, using finetuned CNN on color-constancy-DA with ROT
images yields a higher accuracy than with the finetuned CNN using either
color-constancy-DA with ORIG images or ORIG images alone. However,
all finetuned CNN results obtained using color-constancy-DA images does
not surpass results obtained from finetuned CNN on ROT-DA images
alone. This is possibly due to fact that the test sets are only using ROT-DA
images. Overall the proposed rotation-matrix algorithm leads to higher
accuracies on this dataset with or without the color constancy algorithm.
In contrast to this observation, in the scratch experiments, the results

obtained from training scratch CNNs on color-constancy-DA with ORIG
images outperforms CNN results obtained on ROT-DA and ORIG images
alone. Thus it seems that adding more images to train the scratch CNNs
plays the most important role. Based on this observation, we will use
the best scratch technique (ORIG-MSRCR-ORIG+MSR-ORIG-DA) and
its rotation-matrix version on the next two datasets. It is surprising
that the scratch CNN performs better than the finetuned CNN on the
ORIG+MSRCR-ORIG+MSR-ORIG-DA dataset. This may be caused by
some overfitting problem, which we observed in the test accuracy of subset
2.
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Table 11: Weighted mean of the validation and test classification accuracies of
the CNN applied on different versions of the Aerial UAV dataset

Training CNN Dataset-Variants Validation Test
Finetuned CNN ROT-DA (Okafor et al., 2017) 99.94 99.65

ROT+MSR-ROT-DA 99.81 99.42
ORIG+MSR-ORIG-DA 99.97 99.40

ROT+MSRCR-ROT+MSR-ROT-DA 99.91 99.22
ROT+MSRCR-ROT-DA 99.97 99.12
ORIG+MSRCR-ORIG-DA 99.97 98.74
ORIG (Okafor et al., 2017) 100.00 98.67

ORIG+MSRCR+ORIG+MSR-ORIG-DA 100.00 98.14
Scratch CNN ORIG+MSRCR+ORIG+MSR-ORIG-DA 99.73 99.41

ORIG+MSR-ORIG-DA 99.43 99.32
ROT+MSRCR-ROT+MSR-ROT-DA 99.60 98.74

ORIG+MSRCR-ORIG-DA 99.84 98.27
ROT-DA (Okafor et al., 2017) 99.68 98.18
ORIG (Okafor et al., 2017) 100.00 97.87
ROT+MSRCR-ROT-DA 99.69 97.84
ROT+MSR-ROT-DA 99.77 97.56

4.3.2 Results on Croatia Fish Dataset

We trained the CNNs using five-fold cross-validation data splits. The
training time of the CNN models for each of the methods is t ≤ 16 min.
The models generated from the CNNs using color-constancy-DA variants
with (ROT or ORIG) or (ROT or ORIG alone) were used to compute the
accuracy on the test sets that contain either ORIG or ROT-DA images
without color constancy. The learning curves for train-validation and
testing phases while training for 7200 iterations are shown in Figure 16.



72 unification of rotation matrix and color constancy

720 2880 5040 7200
Number of Iterations

50

55

60

65

70

75

80

85

90

Ac
cu

ra
cy

 %

ORIG+MSRCR-ORIG+MSR-ORIG-DA
ORIG
4x4-ROT+MSRCR-ROT-MSR-ROT-DA
4x4-ROT-DA
2x2-ROT+MSRCR-ROT-MSR-ROT-DA

(a) Validation evaluation of the finetuned CNN

720 2880 5040 7200
Number of Iterations

30

40

50

60

70

80

Ac
cu

ra
cy

 %

ORIG+MSRCR-ORIG+MSR-ORIG-DA
ORIG
4x4-ROT+MSRCR-ROT-MSR-ROT-DA
4x4-ROT-DA
2x2-ROT+MSRCR-ROT-MSR-ROT-DA

(b) Validation evaluation of the scratch CNN

720 2880 5040 7200
Number of Iterations

45

50

55

60

65

70

75

80

85

Ac
cu

ra
cy

 %

ORIG+MSRCR-ORIG+MSR-ORIG-DA
ORIG
4x4-ROT+MSRCR-ROT-MSR-ROT-DA
4x4-ROT-DA
2x2-ROT+MSRCR-ROT-MSR-ROT-DA

(c) Test evaluation of the finetuned CNN
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(d) Test evaluation of the scratch CNN

Figure 16: Five-folds cross-validation mean classification accuracy on the Croatia
Fish Dataset while training for 7200 iterations using CNNs with the
cross entropy loss function.

The mean accuracies for test and validation sets for the different ap-
proaches after that number of iterations are reported in Table 12. We
report that there is no significant difference between the test and vali-
dation performances for most methods. This indicates that the test and
validation performances are consistent.

From Table 12, we observe that the finetuned CNN on ORIG alone, the
color-constancy-DA on ORIG and the 2× 2-ROT version of the dataset
all yield high accuracies. There is no significant difference in accuracies
between these three methods. The best method is the finetuned CNN on
the 2× 2-ROT+MSRCR-ROT+MSR-ROT-DA variant of this dataset.
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When we compare the results of the finetuned CNN applied on 2× 2-
ROT+MSRCR-ROT+MSR-ROT-DA to 4× 4-ROT-DA, there exists a
significant difference (p < 0.05). This indicates that the use of color
constancy DA with ROT images and the right choice of grid resolution
are important for this dataset. We also note that the finetuned CNN
significantly outperforms the scratch CNN on this dataset.

For the scratch experiments, training the CNN using ORIG+MSRCR-
ORIG+MSR-ORIG-DA yields the highest accuracy. This best scratch CNN
approach significantly outperforms the 4× 4 ROT+MSRCR-ROT+MSR-
ROT (p < 0.05). Overall, the choice of color constancy DA with 2× 2 ROT
images works better in our experiment than the use of color constancy
DA with 4× 4 ROT images.

Table 12: Five-fold cross-validation and test classification accuracies and standard
deviations of the CNN applied on different versions of the Croatia fish
dataset

Training CNN Dataset-Variants Validation Test
Finetuned CNN 2× 2-ROT+MSRCR-ROT+MSR-ROT-DA 81.67 ± 2.65 82.18 ± 3.44

ORIG 84.63 ± 2.78 82.08 ± 4.21
ORIG+MSRCR+ORIG+MSR-ORIG-DA 80.54 ± 2.81 81.12 ± 3.16

4× 4-ROT+MSRCR-ROT+MSR-ROT-DA 80.92 ± 2.82 79.34 ± 1.66
4× 4-ROT-DA 81.00 ± 1.66 77.72 ± 1.72

Scratch CNN ORIG+MSRCR+ORIG+MSR-ORIG-DA 76.46 ± 2.40 74.56 ± 4.10
ORIG 73.64 ± 1.99 73.19 ± 3.12

2× 2-ROT+MSRCR-ROT+MSR-ROT-DA 69.71 ± 3.43 70.30 ± 4.20
4× 4-ROT-DA 71.73 ± 3.08 70.10 ± 3.74

4× 4-ROT+MSRCR-ROT+MSR-ROT-DA 64.29 ± 1.30 67.97 ± 4.88

4.3.3 Results on Bird Dataset

We trained the CNNs using five-fold cross-validation data splits. The
training time of the CNN models for each of the methods is t ≤ 13 min.
The models generated from the CNNs using color-constancy-DA variants
with (ROT or ORIG) or (ROT or ORIG alone) of this dataset were used
to compute the accuracies on the test sets that only contain either ORIG
or ROT-DA images (without color constancy images). The learning curves
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for train-validation and testing phases, while training for 8100 iterations
are shown in Figure 17.
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(d) Test evaluation of the scratch CNN

Figure 17: Five-folds cross-validation mean classification accuracy on the Bird-
600 Dataset while training for 8100 iterations using CNNs with the
cross entropy loss function.

The mean accuracies for test and validation sets after that number of
iterations are reported in Table 13.

From this table, we report that there is no significant difference between
the test and validation performances for each of the examined methods,
this shows again that the test and validation performances are consistent
to each other. From the sub-figures in Figure 17, we observe that the
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Table 13: Five-fold cross-validation and test classification accuracies and standard
deviations of the CNN applied on different versions of the Bird-600
dataset

Training CNN Dataset-Variants Validation Test
Finetuned CNN 1× 1-ROT+MSRCR-ROT+MSR-ROT-DA 97.56 ± 2.47 98.47 ± 0.34

ORIG+MSRCR+ORIG+MSR-ORIG-DA 97.11 ± 2.59 98.26 ± 0.25
ORIG 98.00 ± 2.67 97.67 ± 0.56

V 2− 2× 2-ROT+MSRCR-ROT+MSR-ROT-DA 97.11 ± 2.29 97.27 ± 0.93
V 1− 2× 2-ROT+MSRCR-ROT+MSR-ROT-DA 93.55 ± 2.76 96.33 ± 0.79

V 1− 2× 2-ROT-DA 93.33 ± 2.98 95.00 ± 0.73
Scratch CNN ORIG+MSRCR+ORIG+MSR-ORIG-DA 84.67 ± 5.23 85.40 ± 1.73

1× 1-ROT+MSRCR-ROT+MSR-ROT-DA 81.56 ± 4.01 84.27 ± 1.58
ORIG 84.67 ± 5.81 80.73 ± 2.73

V 2− 2× 2-ROT+MSRCR-ROT+MSR-ROT-DA 82.00 ± 5.94 80.73 ± 1.51
V 1− 2× 2-ROT+MSRCR-ROT+MSR-ROT-DA 77.11 ± 5.05 75.80 ± 1.15

V 1− 2× 2-ROT-DA 71.33 ± 7.48 71.20 ± 3.03

finetuned CNNs outperform the scratch CNN methods on the different
dataset variants.

The best techniques are the finetuned CNN on either 1×1-ROT+MSRCR-
ROT+MSR-ROT-DA or ORIG+MSRCR+ORIG+MSR-ORIG-DA. These
results indicate the importance of color constancy on the rotation-matrix
or original images. This success can be attributed to training CNN weights
with enhanced color information and with more images. To obtain this
better performance, it was important to choose smaller rotational bounds
[−15o, 15o] as used in the 1× 1-ROT+MSRCR-ROT+MSR-ROT-DA
rather than the original rotational bounds [1o, 180o]. Such higher angular
bounds may not be suitable for images that have an upright representation
of objects.
Furthermore, we compared the results obtained with the finetuned

CNNs on the different variants of this dataset to the baseline result
from (Lazebnik et al., 2005) which obtained 92.33% using a probabilistic
part-based method (maximum entropy framework). Our best approach
significantly outperformed the baseline with a margin of 6.14% using the
finetuned CNN on 1× 1-ROT+MSRCR-ROT+MSR-ROT-DA. However,
we remark that the obtained scratch CNN results on this dataset performed
worse than the baseline method.
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4.4 Discussion
In deep learning, data augmentation can play an important role if a
dataset does not contain many training images. In this chapter, we used
our novel data-augmentation method that transforms an image into a
new image containing multiple random transformations of the image. We
combined this method with the use of color constancy algorithms that add
several transformed images to the training datasets. We created different
combinations of methods: using original or rotation-matrix images com-
bined with color constancy transformed images or not. These combinations
were compared on three different animal datasets: Aerial UAV containing
cows or not, a dataset with bird images, and a dataset with fish images.
Overall we considered two broad forms of DA based on their increase
(color-constancy-DA with ORIG or ROT-DA) or no increase (ROT-DA
alone) in the amount of training images.
The results show that for the Aerial UAV dataset, the augmented

rotation-matrix images are very useful. The Aerial UAV dataset consists
of pictures taken from the sky, and therefore it is important to cope with
2D rotations to obtain the highest accuracies. It should be noted that this
DA algorithm is useful for the CNNs, because although CNNs are more
or less translational invariant, they are not rotational invariant. For the
fish and birds dataset, the proposed rotation-matrix data augmentation
method does not lead to better results than using the original images.
For these datasets, the images show objects which are often in an upright
position, and therefore there is less need to battle rotational variances.
The color constancy data augmentation helps in overall to get better

accuracies, but the differences are not very large compared to using
the original images. Only on the bird dataset, the color constancy data
augmentation plays a very important role when training the CNN from
scratch. The variation in colors is quite large for this dataset, and therefore
adding additional images with different illumination levels is helpful. On
this dataset, color constancy DA also improves the results of the finetuned
CNN.
The results have also shown that the finetuned CNNs significantly

outperform the CNNs trained from scratch on the Croatia fish and the
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Bird-600 datasets. Furthermore, the finetuned CNNs obtain very high
accuracies on the Aerial UAV and the Bird-600 datasets.

Future works can explore the use of deep neural network architectures
to artificially transform colors in images. This could be done with a novel
way of data augmentation or by adding initial layers that immediately
transform the color pixels. It will also be interesting to create a deep
neural network that can create the best rotation-matrix images, possibly
trained using an adversarial learning framework.





5ANALYSIS OF COLOR SPACES
FOR IMAGE RECOGNITION IN
DEEP LEARNING

This chapter explores the analysis of color space conversion on an
image before applying deep neural networks for recognizing the images.
Deep neural networks have obtained many successes for different image
recognition problems. In most cases, the image datasets consist of images
represented with red, green and blue (RGB) color channels. However, there
are also image datasets consisting of shapes of objects that are represented
in a binary black and white pixel format. This chapter attempts to examine
if converting such datasets to other color spaces affects the performance
of deep neural networks. For this aim, we developed a color conversion
algorithm, which provides a framework for transforming both natural and
binary-shape images to other color variants of the original images. For the
experiments, we use two challenging shape datasets (MPEG-7 and Animal
Shape) and a natural image dataset (Wild-Anim). To classify the images,
we employed a reduced version of the GoogleNet convolutional neural
network. On the Animal-Shape and MPEG datasets, the performance
increase is very small as the CNN obtains high recognition accuracies
using the original space. Finally, the results on the Wild-Anim dataset
show that it is important to use the RGB color space for natural images
to obtain the highest accuracies.

79
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The central goal in computer vision is to construct algorithms
that have the ability to recognize the semantics from an image.
These algorithms face several challenges when dealing with shape

and color variations in an image. One of the trending machine learning
techniques which has the prowess to deal with these challenges is the use
of convolutional neural networks (CNNs). There exist CNN architectures
that have obtained very good performances on image recognition problems
such as human face recognition (Pinto et al., 2011; Parkhi et al., 2015;
Liu et al., 2015), handwritten character recognition (Ciresan et al., 2011),
medical image recognition (Shin et al., 2016), pedestrian detection (Jiang
et al., 2016), improvement of computational speed for object and character
recognition (Gong et al., 2017), crowd control (Fu et al., 2015), and
image retrieval (Montazer and Giveki, 2015). Some well-known CNN
architectures are: AlexNet (Krizhevsky et al., 2012), GoogleNet (Szegedy
et al., 2015), VGG-Net (Simonyan and Zisserman, 2014) and Residual
Networks (ResNets) (He et al., 2016b). In this chapter, we will use the
GoogleNet architecture and analyze the impact of artificially colorizing
binary masked and natural image datasets.
An area of research which shares similarity compared to our proposed

method is the development of colorization techniques. These techniques are
mainly used to convert gray to color images. Early approaches have adopted
several methods to approach the problem of colorization. In (Welsh et al.,
2002; Gupta et al., 2012) the authors used automatic transfer techniques,
while (Ironi et al., 2005) investigated the use of spatial voting with a global
optimization method. The research by Levin et al. (2004) considered the
use of a quadratic optimization algorithm in their study of colorization.
Recently, some works have focused on colorization and enhancement of
gray images using deep convolutional neural networks (CNNs) (Cheng
et al., 2015; Zhang et al., 2016). However, no previous work has considered
the conversion of binary masked (BW) or natural (RGB) images to other
color variants of the original images for a given dataset, and then applying
the CNNs to evaluate the classification performance on the different color
variants of the used datasets.

Related to the datasets used in this chapter, several types of research
have studied the use of segmentation-based algorithms or local feature
descriptors for the recognition of segmented shape datasets. The joint
learning framework approach (Ramesh et al., 2015) which combines several
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feature descriptors has been the state-of-the-art algorithm on the Animal-
Shape dataset. This technique outperforms different segmentation-based
methods (Bai et al., 2009; Li et al., 2011, 2010) and classical descriptors
such as the combination of the bag of visual words with the histogram
of oriented gradients and SIFT (HOG-SIFT-BOW) (Lim and Galoogahi,
2010) and the bag of words (BOW) alone (Ramesh et al., 2015).

In addition to the studies on the Animal-Shape dataset, we also examine
MPEG-7 (Latecki et al., 2000), which is another challenging shape dataset.
This dataset contains more classes compared to the Animal-Shape dataset
and also has a high intra-class similarity. An early study by Sun and
Super (2005) employed the combination of a segment-set and Bayesian
technique for classification of this dataset. The research by Bai et al. (2009)
showed that combining contour and shape features for shape classification
significantly outperforms the use of single features such as contour segments
or skeleton paths. The most recent research on this dataset is the use of
region-based descriptors and the kernel-based extreme learning machine
approach (Lin et al., 2017).
The concept of the classical computer vision methods is gradually

becoming old-fashioned with the emergence of deep learning using differ-
ent convolutional neural network architectures (Krizhevsky et al., 2012;
Szegedy et al., 2015; Simonyan and Zisserman, 2014; He et al., 2016b). Pre-
vious studies have shown that the GoogleNet and AlexNet architectures
perform better than classical feature descriptors (BOW or HOG-BOW)
on a small version of the Wild-Anim dataset (Okafor et al., 2016) which
exists in the RGB color space.

With this chapter, we want to understand the impact of artificially col-
orizing the binary masked (BW) or natural (RGB) images into other color
variants before classifying them using customized GoogleNet architectures.
Contributions: This chapter describes the use of different versions

of the GoogleNet architecture (fine-tuned and scratch instances) for in-
vestigating the classification performances on different color versions of
image datasets. We propose a color conversion algorithm, which presents
the following merits: 1) It can transform binary masked (BW) images to
images represented in different color spaces (RGB, YCbCr, HSV, Lab),
which may aid to boost the CNN’s classification performance, and 2) It is
an efficient algorithm and easy to implement or use.
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The results show that by training a CNN on artificially colorized images
or the original BW images, the classifier yields almost similiar perfor-
mance levels on the Animal-Shape dataset. However, to the best of our
knowledge, our system using either the new color variants or BW outper-
form all previous works on the Animal-Shape dataset. The success can be
attributed to the used neural network system. For the MPEG-7 dataset,
the performance improvement of using different color spaces is very small.
Still, the results of the CNN architecture on the MPEG-7 dataset show
that our system obtains the second best reported result on this dataset.
Lastly, the results of the CNN applied on the Wild-Anim dataset show
that the use of the natural RGB color space is important, as it obtains
significantly better results than using other color spaces.
Outline: Section 5.1 describes the color-space conversion algorithm,

the datasets used, and the visualization of the intensity analysis of some
input images. Section 5.2 explains the instances of the customized CNN
architectures and the experimental setups for each of the datasets. The
experimental results of the CNNs on several variants of the used datasets
are reported in section 5.3. Finally, the conclusion and some possible areas
of future work are discussed in section 5.4.

5.1 Color Spaces and Datasets
This section explains the color space conversion algorithm, the datasets and
preprocessing steps used in our experiments, and shows a clear visualization
of the image intensities for the different color versions of an image taken
from the Animal-Shape dataset.

5.1.1 The Color Spaces

A color space is a method by which one can specify, create and visualize
colors1. In the next subsections, the color components and the mathe-
matical basis for each of the color spaces used in our study are described,
followed by our newly developed color conversion algorithm.

1 http://www.poynton.com/PDFs/coloureq.pdf

http://www.poynton.com/PDFs/coloureq.pdf
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5.1.1.1 Kinds of Color Spaces
This subsection entails a brief discussion on the color spaces used in this
paper. In total, we will use four different color spaces.

1. RGB Color Space: This color space is the most often used color
space. It finds many application fields within the computer graphics
and vision community. This color space consists of additive color
components which are often represented based on the trichromatic
theory1. The three main additive components consist of the colors
red R, green G, and blue B. The combinations of the additive color
components of an RGB color space are shown in Figure 18a and the
different combinations (Jack, 2011) are presented in Table 14. Please
note that the pixel values for the RGB color components lie between
0 and 255.

(a) RGB (b) YCbCr (c) HSV (d) Lab

Figure 18: Pictorial illustration of the different color spaces

Table 14: RGB color combinations

Color Component Normal Range White Yellow Cyan Green Magenta Red Blue Black
R 0 to 255 255 255 0 0 255 255 0 0
G 0 to 255 255 255 255 255 0 0 0 0
B 0 to 255 255 0 255 0 255 0 255 0

2. YCbCr Color Space: There exist several equations which describe
the YCbCr color space. We adopt the computer graphics YCbCr
representation, which can be computed from the RGB color space



84 analysis of color spaces

using the expression (Hsu et al., 2002; Bensaali and Amira, 2004) as
defined in Equation 29:

Y

Cb

Cr

 =


0.257 0.504 0.098
−0.148 −0.291 0.439
0.439 −0.368 −0.071



R

G

B

+


16
128
128

 (29)

The Y accounts for the luminance and is defined within a range
16− 235. The Cb and Cr account for the chrominance components
with respect to blue and red color channels and these are defined
within the range 16− 240 (Prathibha1 et al., 2012) as shown in
Table 15. This color space can be represented as in Figure 18b.
Furthermore, an 8-bit YCbCr pixel representation will be used that
contains values between 0 and 255. This is required to avoid either
overflow or underflow that may arise due to wrap-around (Jack,
2011).

Table 15: YCbCr color combinations adopted from (Prathibha1 et al., 2012)
without normalization

Color Component Normal Range White Yellow Cyan Green Magenta Red Blue Black
Y 16 to 235 235 210 170 145 107 82 41 16
Cb 16 to 240 128 16 166 54 202 90 240 128
Cr 16 to 240 128 146 16 34 221 240 110 128

3. HSV Color Space: This color space was created to manipulate colors.
It finds application in the human perception and interpretation of
color. In Figure 18c, we show a visual illustration of the HSV color
space. Table 16 shows each component of the HSV color space. The
Hue (H) component of this color space is tilted at a range from
0◦ to 360◦, while the saturation (S) and value (V) components are
normalized to a range between 0 and 1 (Jack, 2011).
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Table 16: HSV color combinations
Color Component Normal Range White Yellow Cyan Green Magenta Red Blue Black
H 0◦ to 360◦ 0◦ 60◦ 180◦ 120◦ 300◦ 0◦ 240◦ 0◦

S 0 to 1 0 1 1 1 1 1 1 0
V 0 to 1 1 1 1 1 1 1 1 0

A modified mathematical equation used for computing the conversion
from RGB to HSV (Chen et al., 2007; Liu et al., 2014) is defined as:

H =



60
(

G−B
max(R,G,B)−min(R,G,B)+ε

)
if R = max(R,G,B)

60
(

2 + B−R
max(R,G,B)−min(R,G,B)+ε

)
if G = max(R,G,B)

60
(

4 + R−B
max(R,G,B)−min(R,G,B)+ε

)
if B = max(R,G,B)

(30)

S = 60
(
max(R,G,B)−min(R,G,B)

max(R,G,B) + ε

)
(31)

V = max(R,G,B) (32)

Where ε > 0 is a small constant. An 8-bit pixel image of the HSV
color space can then be computed with:

H → H/2, S → 255× S, V → 255× V (33)

4. Lab Color Space: The Lab color space is a direct derivation from the
CIE XY Z color space. It can be defined as a non-linear representa-
tion of L, a, and b components which are intended to represent the
logarithmic response of the eye2. This color space can be computed
using the expressions below:

L =

 116( YYn
)

1
3 − 16 if Y

Yn
> 0.008856

903.3( YYn
) if Y

Yn
≤ 0.008856

(34)

2 http://www.poynton.com/PDFs/coloureq.pdf

http://www.poynton.com/PDFs/coloureq.pdf
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a = 500
(
X

Xn
− Y

Yn

)
+ δ (35)

b = 200
(
Y

Yn
− Z

Zn

)
+ δ (36)

Where δ =
 128 for 8 bit

0 for floating− point
Xn, Yn, and Zn denote the CIE XY Z values for a given white
reference point. X, Y , and Z represent the components of the XYZ
color space which are derived from the RGB color space. In Figure
18d, we illustrate the color components of a Lab color space. The
luminance component L is within the range from 0 to 100 between
two opposite directions, and the chrominance (a and b) are within
the range from -128 to 128 between two opposite directions for each
of the chrominance components. Table 17 shows each component of
the Lab space.

Table 17: Lab color combinations in floating-point pixels (without normalization)

Color Component Normal Range White Yellow Cyan Green Magenta Red Blue Black
L 0 to 100 100.00 97.14 91.11 87.74 60.34 53.24 32.30 0.00
a -128 to 128 0.00 -21.55 -48.09 -86.18 98.23 80.09 79.19 0.00
b -128 to 128 0.00 94.48 -14.13 83.18 -60.83 67.20 -107.86 0.00

We remark that most of the images examined exist as 8-bit pixel
intensities. An 8-bit representation of the Lab channels can be
computed with:

L → 255L
100 , a → a+ 128, b → b+ 128 (37)

Where the Lab channels on the right-hand side of the equations
correspond to; 0 ≤ L ≤ 100, −128 < a < 128, −128 < b < 128
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5.1.1.2 Conversion Algorithm Between Color Spaces
Based on the established mathematical relationship between the color
spaces, it is possible to convert from RGB to other color spaces as was
discussed in the previous subsection. The Caffe framework has a convert-
imageset function, which is often used for creating the training, testing and
validation sets, and stores each of these sets with an ’lmdb’ data format.
This function processes images in two ways; either as gray (1 channel) or
color (3 channels). We did not use the gray option during our conversion,
rather we processed all the images in each of the three datasets to a
3-channel representation irrespective of their original image information.
This is because the fine-tuned GoogleNet architecture requires a 3-channel
input image.
In this study, we convert the masked images that exist in BW (shape

image datasets) and RGB (natural image dataset) to different color spaces:
BW, RGB, HSV, Lab, and YCbCr. To understand how this was done, see
the color-space conversion pseudocode in Algorithm 2. Some BW images
have pixels which exist as 1 bit information. Hence direct color conversion
will result in a plain background with the absence of a foreground (contour
shape representation). We used a threshold function for mapping 8-bit
into 1-bit pixel intensities, with the aim of preserving the contours within
the masked images. Then, the resulting images are converted to indexed
images using MatLab functions (gray2ind)3 by specifying a color-map
size that is set to 16. The indexed images are further converted using
a MatLab function (ind2rgb) with a jet color-map size set to 16 to a
true-color (RGB) with floating-point pixel values between {0, 1}. The true-
color is multiplied by 255 to obtain pixel values in floating point (double)
format. We further provide an intuitive mathematical explanation for the
index to RGB image transformation.

First, the ind2rgb function computes a transformed index image defined
as:

Itm = max(1,min(Im, size(Cm, 1))) (38)

Itm denotes the transformed indexed image given the index image Im
and color-map Cm as inputs. We used a jet color-map Cm that returns
16× 3 color pixel values in floating point format. Note that both indexed

3 http://nl.mathworks.com/help/images/ref/gray2ind.html
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images have the same dimensions as the original input image with an
image size of 250× 250 pixels, but with different pixel information.

Secondly, each channel of the intended RGB color space is initialized to
a zero array 0N×M . The row N and column M of the initialized arrays
have the same image size as the indexed image. The intended channels
are mapped to each column of the described color-map Cm given Itm as
an input. The mapping transformation of Itm to the specified color-map
for each of the RGB color channels can be defined as:

R(:) = Cm(Itm, 1), G(:) = Cm(Itm, 2), B(:) = Cm(Itm, 3) (39)

Finally, the resulting channels were concatenated to form the RGB color
space Irgb:

Irgb = [R;G;B] (40)

The Irgb image pixels all exist in a floating-point pixel format which lie in
the range [0, 1]. We noticed that the image color information looks faded.
Hence we scaled the pixels by multiplying the Irgb image by a factor of
255. This improved the visibility of the image representation. Then the
scaled image also existed as double. We employed the imwrite function to
save the floating point (double) image into an 8-bit pixels image in .jpeg
file format. This creates some color blending between the color channels so
that object borders are smoothed a bit on a local scale. Still, on a global
scale the overall impact of this is not large as can be seen in Figure 20.

Figure 19 shows an illustration of a patch pixel transformation pipeline
from a BW image to an 8-bit RGB image. With the aim to obtain other
color variants, the RGB images were transformed to the other color spaces
using the mathematical transformation principles discussed in the previous
subsection.

Additionally, we considered the conversion from RGB to BW images in
the Wild-Anim dataset. This was achieved by first converting the RGB to
gray-scale images and then processing the gray into BW pixels by applying
a threshold to the image pixels. The BW image is expected to have image
pixels which exist either in 1-bit {0, 1} or 8-bit {0, 255}. This means that
if the pixel values are {1, 255} (white) they represent high luminance
greater than a threshold and other pixels are converted to 0 (black). In
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Algorithm 2 Color Space Conversion Algorithm
Input : BW or RGB raw images I = IB(x, y, c) from an input directory, c
is the number of channels, x, y are the pixel row and column, respectively.
Output : Converted output of the new color spaces y = IC(x, y, c) that
is stored into an output directory.
1: procedure Create a filelist of all N images within the

input directory and specify the selection of color space
options: RGB, HSV, YCbCr, Lab, BW

2: for each image i ∈ N do
3: Check the image channels
4: if c = 1 and color-selection = others then the image is BW
5: Check the BW image pixels,
6: If image pixels is 1-bit, then map to an 8-bit pixel g ∈
{0, 255}.

7: Otherwise pixels exist as 8-bit.
8: Transform the BW image to an indexed image Im with a

4-bit pixel.
9: The indexed image is transform to a true color image Irgb

using eqn 40.
10: The Irgb image in the floating-point format is upscaled by

a factor of 255 to obtain higher intensity information across the color
channels.

11: If selected color space is RGB save into the output directory
12: Otherwise, check the chain of elseif statement to convert

from RGB to other color space { YCbCr, HSV, Lab }
13: If the condition of either step 11 or 12 is met, proceed to

step 21.
14: else c = 3 and and color-selection 6= BW

15: If an image is RGB proceed to step 21.
16: Otherwise, check statement to convert from RGB to other

color space.
17: Elseif c = 3 and color-selection = BW

18: Convert the RGB image into a gray image.
19: Convert gray image to BW image with a threshold of 0.4
20: end if
21: Store all output images of the new color space into the output

directory with pixel values existing as 8 bit pixels.
22: end for
23: end procedure
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our study, the Wild-Anim dataset was originally RGB. We converted the
color pixels (RGB) to BW images in this dataset by adopting a threshold
setting of 0.4, because it seemed to retain most information of animal
shapes in the Wild-Anim images. The computer program of Algorithm 2
was developed in MATLAB. The new versions of these datasets were fed
as input to the customized versions of the GoogleNet architectures.

Figure 19: Transformation pipeline from BW pixels to 8-bit RGB pixels of an
Animal-Shape image.

5.1.2 Datasets and Preprocessing

This section describes the various datasets used in our experiments, namely
Animal-Shape, MPEG-7, and Wild-Anim.

5.1.2.1 Animal-Shape Dataset
This dataset has often been called either Animal or Shape dataset4 by
previous authors (Bai et al., 2009; Li et al., 2011, 2010; Ramesh et al.,
2015). We refer to it as the Animal-Shape dataset. The Animal-Shape
dataset was first presented in (Bai et al., 2009). The dataset has become a

4 https://sites.google.com/site/xiangbai/animaldataset

https://sites.google.com/site/xiangbai/animaldataset
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famous benchmark dataset used for validating segmentation and shallow
image-recognition techniques. This dataset contains masked images (BW)
with 20 classes of different shapes of animals. In this dataset, there are
in total 2000 images, and in each class there exist 100 individual images
which are positioned in different orientations. The images are in 8-bit
pixel format with non-uniform image sizes. We normalized the image sizes
to 250× 250 pixels. Algorithm 2 is used for converting the BW images
into the different color spaces with the aim to create new versions of the
dataset. Some example pictures for the original and the converted versions
of this dataset are shown in Figure 20.

Figure 20: Example images of BW conversion to different color variants from the
Animal Shape dataset. From left to right: BW (original), RGB, Lab,
HSV and YCbCr.

5.1.2.2 MPEG-7 Dataset
MPEG-7 (Latecki et al., 2000) is another challenging shape dataset. This
dataset contains a total of 1400 images and has 70 classes with 20 individual
images per class. The images within this dataset exist as BW either in 1-bit
or 8-bit pixel format with non-uniform image sizes. Again, we normalized
the image sizes to 250× 250 pixels. We report the data split for this dataset
and the CNN experimental settings in subsection 5.2.2.2. We employed
Algorithm 2 to obtain new color versions of this dataset. Some example
pictures for the original and the converted versions of this dataset are
shown in Figure 21.
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Figure 21: Example images of BW conversion to different color variants from the
MPEG-7 dataset. From left to right: BW (original), RGB, Lab, HSV
and YCbCr.

5.1.2.3 Wild-Anim Dataset
The Wild-Anim dataset is a new animal dataset originally presented in
(Okafor et al., 2016). This dataset consists of a total of 5,000 images of
5 classes with 1000 images per class. The images present in this dataset
are RGB images. We carried out experiments on a 20% subset5 of the
images within this dataset that contains 1000 images. We report the data
split for this dataset and the CNN experimental settings in subsection
5.2.2.3. We used Algorithm 2 to obtain new color versions of this dataset.
Some example pictures for the original and the converted versions of this
dataset are shown in Figure 22.

Figure 22: RGB Wild-Anim dataset conversion to other color spaces. From left
to right: RGB (original), BW, Lab, HSV and YCbCr.

5 http://www.ai.rug.nl/~emmanuel/wild-animdataset.html

http://www.ai.rug.nl/~emmanuel/wild-animdataset.html
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5.1.3 Intensity Analysis on Color Variants of an
Animal-Shape Image

In this subsection, we want to understand and visualize the image pixel
intensities for the original and new versions of the Animal-Shape dataset.
For this aim, we used the ’bird1.tif’ as shown in Figure 23 to illustrate the
pixel intensity for the channels in each of the color spaces. The original
image size is 324× 640 pixels with an aspect ratio (AR) of ∼ 1.98. We
rescaled the image size to 250× 250 pixels. Hence resulting in an AR of 1
and this implies that ∼ 49.5% of the AR from the original image is reduced.
Furthermore, the rescaling introduced slight anamorphic distortions. With
the aim to visualize each color channel, we computed the log value of the
pixel counts as shown in Figure 24. The pixel values in the original BW
image only exists as {0, 255} and most of the saturation is at 0 as shown
in Figure 24a. Because of the imwrite function the newly obtained images
for the different color spaces consist of all 3 color components.

Figure 23: Example image used for intensity visualization of the Animal-Shape
dataset

(a) (b) (c) (d) (e)

Figure 24: Pixel intensity analysis of the different color spaces of an Animal-
Shape image (bird1.tif). The pixel count for each of the color variants
is represented in log-scale: (a) Original BW Image (8-bit), (b) 8-bit
HSV Image, (c) 8-bit RGB Image, (d) 8-bit Lab Image, and (e) 8-bit
YCbCr Image
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We observed that the channel {B, b,Cr} in most of the color spaces
{RGB,Lab,Y CbCr} shows a better intensity spread as shown in Figure
24(c) to 24(e), compared to other channels within the mentioned color
spaces. An exception to this rule is the H channel of the HSV, whose
maximal pixel intensity lies around 165 as shown in Figure 24(b). Note
that the H channel has values between 0 and 180.

5.2 Deep Learning Setup
We study deep learning using convolutional neural networks (CNNs) to
deal with the discussed datasets. We describe in this section several
instances of the GoogleNet architecture and our experimental setup.

5.2.1 Instance of GoogleNet

A brief explanation of this technique was discussed in subsection 2.2.2.

5.2.1.1 Scratch GoogleNet
The Scratch GoogleNet architecture does not rely on any pre-trained
CNN model but is trained using randomly initialized weights. Scratch
GoogleNet employs Xavier Initialization (Glorot and Bengio, 2010). This
algorithm allows initializing learnable weights from an initial distribution.
We considered two instances of the Scratch GoogleNet architecture based
on the numbers of filters in each convolutional layer within the last incep-
tion module.

Original Scratch GoogleNet (OS-GoogleNet) This version of the CNN
contains a max-pooling layer and six convolutional layers. The original
number of filters (neurons) in each convolutional layer within the last
inception layer is as follows: 384, 192, 384, 48, 128 and 128 respectively.
Our proposed system setup with a simplified representation of the used
CNN (Szegedy et al., 2015) is shown in Figure 25.

Reduced Scratch GoogleNet (RS-GoogleNet) The RS-GoogleNet is
derived from the OS-GoogleNet by reducing the numbers of filters in the
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convolutional layer within the last inception layer of the OS-GoogleNet.
This method is motivated from the success obtained in the research paper
in (Okafor et al., 2016). In this study, we want to exploit the efficacy
of this method on the different color variants of the datasets used. This
version of the CNN is designed to contain the following numbers of filters
in each convolutional layer of the last inception module: 384, 24, 24, 24,
16 and 16 respectively. The block diagram illustrating this modification is
shown in Figure 2.

Figure 25: Block diagram showing our system setup using a simplified version
of the GoogleNet architecture (Szegedy et al., 2015) applied on the
MPEG-7 dataset; the ’:’ denote other modules or network layers.

5.2.1.2 Finetuned GoogleNet
In this subsection we will consider two instances of this architecture.

Original Finetuned GoogleNet (OFT-GoogleNet) The OFT-GoogleNet
is a CNN that requires the use of pretrained weights from the ImageNet
dataset. The pretrained model is used to initiate the training process using
our CNN configurations.

Reduced Finetuned GoogleNet (RFT-GoogleNet) This is similar to to
the OFT-GoogleNet with the only difference that it is trained using the
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RS-GoogleNet configuration. So the training starts with pretrained weights
rather than using randomly initialized weights for the reduced architecture.

5.2.2 Experimental Settings

Our experimental procedure is similar to that of (Szegedy et al., 2015)
that employs stochastic gradient descent (Krizhevsky et al., 2012) and the
momentum update rule on the weights as described in Equations 41 and
42.

ui+1 = µui − αL

δWi +

(
∂L

∂Wi

)
Di

 (41)

Wi+1 = Wi + ui+1 (42)

where L is the cross-entropy loss function, µ is the momentum value, αL
is the learning rate, δ is the value for weight decay, ui is the momentum
variable, i is the iteration number, Di is the batch over index iteration i
and

(
∂L
∂Wi

)
computes the mean over the ith batch Di of the derivative of

the objective function with respect to Wi.
The various instances of the GoogleNet in our study use a simple

data augmentation technique that involves cropping and flipping (hori-
zontal reflection). This is done to create additional examples of images
during online training of the CNN. For the experiments, we employed
the following uniform parameters: we trained each scratch model (OS-
GoogleNet/RS-GoogleNet) for 30, 000 iterations, while the fine-tuned
models (OFT-GoogleNet/RFT-GoogleNet) were trained for 10, 000 itera-
tions. All training of the CNN models was carried out on a Ge-Force GTX
960 NVIDIA GPU. The overall training time of the CNN models is in the
range 0.3 ≤ t ≤ 5.6 hours for each run, depending on the dataset used and
the corresponding CNN setup. The CNNs employ a crop size of 224× 224
pixels, momentum 0.9, interval display and average loss were set to 40,
the power value is set to 0.5 with a gamma value that is set to 0.1 and
the weight decay is set to 0.0002. The maximum iterations and step-size
were set to 10, 000 and 30, 000 for finetuned and scratch experiments
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respectively. During training of the CNN models, we employed a fixed
learning rate. The other CNN parameters and data distributions in our
study are dependent on the dataset used.

5.2.2.1 Animal-Shape Dataset Distribution and CNN
Parameters

We employed the same data-split as described in (Ramesh et al., 2015),
whereby the train to test images are distributed in the ratio 50% : 50%.
Furthermore, we split the training images into training/validation sets in
the ratio 40% : 10%. This data distribution was shuffled 5 random times
for each dataset. Additionally, we carried out two sets of experiments on
this dataset.

Experiment I: We employ a base learning rate of 0.001, training and
validation sets batch size was set to 10, the solver iterations parameter is
set to 20, and each snapshot model of the CNN is created after every 1000
iterations. This implies that the finetuned and scratch CNN experiments
require 10 and 30 snapshots respectively based on the already described
number of maximum iterations. Please note that the train-validation sets
are used for creating the CNN models. These models are then used for
evaluating the different test sets. We used an evaluation test iteration
value that is set to 100.

Experiment II: We also considered a different learning rate that is set
to 0.002, using a higher number of the training batch size that is set to 20
and we reduced the validation batch size to 5. These settings resulted in a
change in the solver iteration to a value 40. Moreover, we adjusted the
number of snapshots to be generated after every 2000 iterations. Hence, the
corresponding number of snapshots is 5 and 15 for finetuned and scratch
CNN experiments respectively. We used an evaluation test iteration value
that is set to 200.

5.2.2.2 MPEG-7 Dataset Distribution and CNN Pa-
rameters

We adopted the same data-split as described in (Bai et al., 2009; Lin
et al., 2017), whereby the train and test images are distributed in the
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ratio 50% : 50% respectively. Furthermore, we split the training images
into training/validation sets in the ratio 40% : 10% respectively. This data
distribution was shuffled 5 random times for each dataset.

Experiment: The base learning rate used is 0.001, the solver iterations
is set to 28, and the training/validation batch sizes of images is set to
20/5 respectively. Again each snapshot model is created at every 2, 000
iterations. This results in 5 and 15 snapshots for finetuned and scratch
experiments respectively based on the maximum iteration specification.
We used an evaluation test iteration value that is set to 140.

5.2.2.3 Wild-Anim Dataset Distribution and CNN
Parameters

We adopted the same experimental settings as described in (Okafor et al.,
2016), the training/testing/validation image samples are distributed in
the ratio 80% : 10% : 10% on 1000 examples of the dataset.

Experiment: We employ a base learning rate of 0.001, training and
validation sets batch size was set to 10, the solver iterations is set to 10,
and each snapshot model of the CNN is created after every 1000 iterations.
This implies that the finetuned and scratch experiments require 10 and
30 snapshots respectively based on the already described number of maxi-
mum iterations. We used an evaluation test iteration value that is set to 10.

Please note that the number of output neurons from each of the last
fully connected layers before the three classifiers in each of the CNN
architectures is equal to the number of classes present in each of the
datasets under study. Then the softmax classifier is used to make the
prediction using the activations of the last output neurons.

5.3 Results
We report experimental results on both shape and natural image datasets.
We trained using the train-validation sets to create several models that
are used to compute the accuracies of the methods on the test sets using
different color variants of the datasets. We report Top-1 classification
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accuracies for each of the methods examined on all the datasets used.
Additionally, we report Top-5 classification accuracies on MPEG-7, this is
because the dataset contains more classes.

5.3.1 Evaluation on the Animal-Shape Dataset

In our preliminary investigation, we employed all the instances of GoogleNet
as described in section 5.2, to evaluate the CNNs on the masked images
(BW) of the Animal-Shape dataset. We used the train-validation sets for
training and testing of the CNNs based on five-fold cross-validation. We
computed the mean of the test and validation classification accuracies with
the corresponding confidence intervals for the two sets of experimental
settings as described in the previous section. The results of our findings
are presented in Table 18. From this table, we are 95% confident that
there is no clear difference between the original and the reduced instances
of GoogleNet. This observation motivated our use of the reduced instance
of both scratch and finetuned versions of GoogleNet for the remaining
experiments on other color variants of this dataset. Since the reduced
instances of GoogleNet are direct alternatives to the original versions,
we repeated the same CNN training procedure as described for the BW
version of this dataset for all the color variants.

The test evaluation results for the reduced instances of scratch and
finetuned CNN architectures are shown in Figure 26 and 27 for the two
sets of experimental settings.

Table 18: Five-fold cross validation results showing accuracies (95% confidence
Intervals) for the test and validation sets using different instances of
GoogleNet on the BW version of the Animal-Shape dataset.

Evaluation Type OFT-GoogleNet OS-GoogleNet RFT-GoogleNet RS-GoogleNet
Experiment I Test 87.62 ± 1.40 76.74 ± 0.86 88.20 ± 1.32 75.84 ± 0.79

Validation 88.40 ± 2.31 77.20 ± 1.06 89.40 ± 1.37 78.40 ± 2.31
Experiment II Test 88.70 ± 0.94 76.80 ± 0.32 88.52 ± 0.54 77.02 ± 0.94

Validation 90.30 ± 1.85 77.50 ± 2.06 90.70 ± 1.20 78.60 ± 2.83

These figures show box-plot test distributions after 10K and 30K
iterations for reduced finetuned and scratch experiments respectively on
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(a) RFT GoogleNet Evaluation (b) RS GoogleNet Evaluation

Figure 26: Reduced GoogleNet test accuracies for different color variants of the
Animal-Shape dataset after 10K iterations for RFT-GoogleNet and
30K iterations for RS-GoogleNet (Experiment I).

(a) RFT GoogleNet Evaluation (b) RS GoogleNet Evaluation

Figure 27: Reduced GoogleNet test accuracies for different color variants of the
Animal-Shape dataset after 10K iterations for RFT-GoogleNet and
30K iterations for RS-GoogleNet (Experiment II).

the different color variants of this dataset. We computed the mean of
the test and validation classification accuracies with the corresponding
confidence intervals based on five-fold cross-validation. Our findings are
reported in Table 19. The results show that the two experimental setups
present almost similar levels of performance.

As the first remarkable observation from Table 19, the results show that
the reduced instances for both kinds of GoogleNet architectures applied
on some of the color variants show similar performance compared to the
result obtained using GoogleNet on the BW version of this dataset. In
addition, we observe that the fine-tuned versions of the CNN significantly
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Table 19: Five-fold cross validation results showing the mean accuracies and
95% confidence intervals for the test and validation sets using reduced
instances of GoogleNet applied on the Animal-Shape dataset.

Evaluation CNN Method RGB YCbCr HSV Lab BW
Experiment I: Test RFT-GoogleNet 87.76 ± 0.73 88.56 ± 0.54 88.86 ± 0.75 87.94 ± 0.95 88.20 ± 1.32

RS-GoogleNet 76.24 ± 0.56 76.00 ± 2.56 76.26 ± 0.74 74.82 ± 1.38 75.84 ± 0.79
Experiment II: Test RFT-GoogleNet 88.44 ± 1.38 89.62 ± 0.83 88.12 ± 0.66 87.90 ± 1.01 88.52 ± 0.54

RS-GoogleNet 77.42 ± 0.91 77.46 ± 1.49 75.46 ± 0.80 77.00 ± 0.59 77.02 ± 0.94
Experiment II: Validation RFT-GoogleNet 87.10 ± 1.70 89.30 ± 1.34 89.20 ± 1.68 88.30 ± 2.64 90.70 ± 1.20

RS-GoogleNet 78.40 ± 1.34 79.20 ± 2.05 77.60 ± 2.59 78.30 ± 3.32 78.60 ± 2.83

outperform all the scratch versions. Based on the results obtained, it is
evident that the GoogleNet architecture applied on some of the color
versions of this dataset profits from the pre-trained CNN model.

Furthermore, the best results in either experimental settings I or II
for each method were compared to results obtained in previous research.
The comparison of these methods is shown in Table 20. The results
show that RFT-GoogleNet applied on the YCbCr version of this dataset
outperforms the joint learning approach (Ramesh et al., 2015) with a
significant improvement of 3.62%. In addition, the RFT-GoogleNet on
HSV, BW, RGB, and Lab variant of this dataset also show a significant
improvement compared to the best previous result with an improvement
margin of 2.86%, 2.52%, 2.44%, and 1.94% respectively. The use of the
scratch versions of the GoogleNet architecture applied on all the different
color spaces showed a worse performance compared to most of the existing
works.

5.3.2 Evaluation on the MPEG-7 Dataset

For this dataset we used the train-validation sets for training and testing
the CNNs based on five-fold cross-validation. The models generated were
used to evaluate the CNNs on each of the color variants of this dataset.
The test distribution performances obtained using reduced instances of
the GoogleNet architecture for Top-1 accuracies are shown in Figure
28. Furthermore, we compute the mean for the five-fold cross-validation
and test accuracies with 95% confidence intervals for Top-1 and Top-5
classification accuracies. The results are reported in Table 21. From this
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Table 20: Comparison of our approaches to other methods on the Animal-Shape
dataset.

Methods Test Accuracy
Joint Learning Approach (Ramesh et al., 2015) 86.0
Bi-gram (Ramesh et al., 2015) 83.5
BOW (Ramesh et al., 2015) 81.1
Contour Segment-Skeleton Path-Discriminative Path (CS-SP-DP) (Li et al., 2011) 80.7
HOG-SIFT-BOW (Lim and Galoogahi, 2010) 80.4
Shape-Tree (Li et al., 2010) 80.0
Contour Segment-Skeleton Path (CS-SP-IDSC-F) (Bai et al., 2009) 78.7
Contour Segment-Skeleton Path (CS-SP) (Bai et al., 2009) 78.4
RFT-GoogleNet-YCbCr 89.62
RFT-GoogleNet-HSV 88.86
RFT-GoogleNet-BW 88.52
RFT-GoogleNet-RGB 88.44
RFT-GoogleNet-Lab 87.94

table, we observe that there exist very close performance correlations
between the various methods under study. Furthermore, the table also
shows that the results obtained using RFT-GoogleNet on the YCbCr
dataset are better than the CNN results on the original masked dataset
(BW) with a margin of 0.71% and 0.51% for Top-1 and Top-5 accuracies
respectively. Another good approach is the use of RFT-GoogleNet applied
on the HSV version of the dataset that outperforms the original BW
masked dataset with a difference of 0.45% and 0.60% for Top-1 and Top-5
accuracies respectively. The results obtained using the reduced scratch
version of GoogleNet applied on all the color variants of this dataset
outperforms the CNN trained on the original masked dataset (BW) for
both Top-1 and Top-5 accuracies. However, the differences with respect
to the Top-5 accuracies are very marginal. We also remark that the use
of Lab and RGB color spaces did not work so well using the reduced
fine-tuned GoogleNet when compared to the results obtained using the
same instance applied on the original dataset (BW).

We compared our best methods to the previous works on this dataset as
reported in Table 22. According to the results our Top-1 performance using
RFT-GoogleNet on YCbCr and HSV are currently the second best results
reported on this dataset. Our proposed Top-1 method even outperforms
the most recent research (Lin et al., 2017) on this dataset as shown in
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Table 22. The current state-of-the-art technique employs the use of contour
segment and skeleton path (Bai et al., 2009) in their research. However,
it is not very explicit what classification ranking was employed in their
study.

(a) RFT GoogleNet Evaluation (b) RS GoogleNet Evaluation

Figure 28: Reduced GoogleNet test accuracies for different color variants of the
MPEG-7 dataset after 10K iterations for RFT-GoogleNet and 30K
iterations for RS-GoogleNet.

Table 21: Five-fold cross-validation and test performances (95% Confidence In-
tervals) on the MPEG-7 Dataset with respect to Top 1 and Top 5
Accuracies

Evaluation Type CNN Methods RGB YCbCr HSV Lab BW
Test (Top 1) RFT-GoogleNet 90.71 ± 0.45 91.94 ± 0.61 91.68 ± 1.32 89.82 ± 1.46 91.23 ± 1.03

RS-GoogleNet 89.37 ± 0.70 89.20 ± 1.17 89.74 ± 0.79 89.31 ± 1.02 88.85 ± 1.17
Validation (Top 1) RFT-GoogleNet 90.00 ± 2.59 92.14 ± 1.58 90.86 ± 2.39 89.85 ± 2.00 91.42 ± 1.90

RS-GoogleNet 87.71 ± 2.52 88.57 ± 2.38 89.42 ± 2.97 87.71 ± 2.95 88.29 ± 2.70
Test (Top 5) RFT-GoogleNet 96.20 ± 0.45 97.34 ± 0.30 97.43 ± 0.64 96.51 ± 0.82 96.83 ± 0.44

RS-GoogleNet 96.49 ± 0.22 96.40 ± 0.50 96.46 ± 0.55 96.31 ± 0.42 96.29 ± 0.53
Validation (Top 5) RFT-GoogleNet 96.43 ± 0.97 97.29 ± 0.92 97.43 ± 0.75 96.57 ± 1.28 96.86 ± 0.64

RS-GoogleNet 96.71 ± 2.15 96.71 ± 1.29 96.29 ± 2.00 96.29 ± 2.29 96.29 ± 1.34
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Table 22: Comparison of our approaches to other methods on the MPEG-7
dataset.

Methods Test Accuracy
Contour Segment and Skeleton Path (Bai et al., 2009) 96.60
Region Area Descriptor-Simplified Shape Signature-RSD (RAD+SSS+RSD) (Lin et al., 2017) 91.43
Contour Segment (Bai et al., 2009) 91.10
Segment Set (Sun and Super, 2005) 90.90
Region Area Descriptor-Simplified Shape Signature (RAD+SSS) (Lin et al., 2017) 89.57
Skeleton Path (Bai et al., 2009) 86.70
RFT-GoogleNet-YCbCr 91.94
RFT-GoogleNet-HSV 91.68

5.3.3 Evaluation on the Wild-Anim Dataset

We employed the train-validation sets to create models during training,
which are used to evaluate the various color variants of this dataset, using
reduced instances of the already described CNNs. We computed the mean
test distributions (with 95% confidence intervals) after 10K iterations for
RFT-GoogleNet and 30K iterations for RS-GoogleNet as shown in Figure
29. The results obtained are also shown in Table 23. The results show that
RFT-GoogleNet applied on the YCbCr version of this dataset obtained an
accuracy of 98.2% which outperforms most of the other color versions of
this dataset, except for the state-of-the-art (Okafor et al., 2016) technique
using RFT-GoogleNet applied on the RGB version of the dataset. This
is expected because the fine-tuned filters from GoogleNet were trained
on natural images which have particular color patterns. Because the pre-
trained net was trained on RGB images, it also learned to extract features
from the patterns existing in RGB space. It can be observed from Table
23 that GoogleNet with both scratch and fine-tuned versions applied on
YCbCr and HSV significantly outperform the use of the Lab color space.
Still, also for scratch GoogleNet, the use of the RGB images leads to the
best results, which shows that natural images are best described using this
color space. Please note that the reduced instances of GoogleNet applied
on most of the color spaces {RGB,Y CbCr,HSV } outperform the use
of the BW version of this dataset. This shows the importance of color
information in deep learning. However, we observed that the CNN on
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the Lab color space yields the worst performance on this dataset, which
can be explained by the fact that the transformation from the natural
image (RGB) color space to the Lab color space resulted in the loss of
useful pixel information as shown in Figure 22. That is not the case in the
transformation which created the Lab versions from the binary masked
images as discussed in the previous subsections, where the CNN trained
on the Lab color space yielded fairly good results compared to the CNN
trained on the other color spaces.

(a) RFT GoogleNet Evaluation (b) RS GoogleNet Evaluation

Figure 29: Reduced GoogleNet test accuracies for different color variants of the
Wild-Anim dataset after 10K iterations for RFT-GoogleNet and 30K
iterations for RS-GoogleNet.

Table 23: Average test accuracies (with 95% Confidence Intervals) on the Wild-
Anim Dataset

CNN Methods RGB YCbCr HSV Lab BW
RFT-GoogleNet 99.93 (Okafor et al., 2016) 98.20 ± 1.95 93.20 ± 2.38 77.20 ± 2.18 93.00 ± 0.96
RS-GoogleNet 89.00 (Okafor et al., 2016) 86.00 ± 4.57 86.60 ± 3.39 65.60 ± 1.89 81.80 ± 3.06

5.3.4 Significance Test

We employed student’s T-tests to determine the significance of the results
reported in the previous subsections.
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5.3.4.1 Animal-Shape Dataset
The results show that the CNNs trained on some of the color variant
images yield marginal performance gains compared to the CNN trained
on the original BW images of the dataset. In general there is no significant
difference using CNN applied to either color variants or BW on this
dataset.

5.3.4.2 MPEG-7 Dataset
In subsection 5.3.2, we observed a marginal performance gain training
CNNs on some of the color variants of this dataset when compared to
CNNs that are trained on the original images (BW). However, the CNNs
trained on the color variants show no significant difference (p > 0.05)
when compared to the CNNs trained on the original images. This can be
explained by the fact that the CNNs, when trained on either the color or
the BW versions of this dataset, have already attained a very good level
of performance (even better than for the Animal-Shape dataset despite
consisting of more classes).

5.3.4.3 Wild-Anim Dataset
The use of finetuned CNNs trained on RGB and YCbCr images yield
significantly higher classification accuracies (p < 0.05) when compared to
the CNN trained on the BW images of this dataset.

5.4 Conclusion
We developed a color space conversion algorithm that has the potential
to transform images to other color variants of image datasets. Then,
the datasets were fed as input to two broad customized versions of the
GoogleNet architecture. The algorithm provides informative pixels to the
black and white binary masked images, which is especially clear in the
datasets which are transformed to YCbCr color space.
We remark that this is the first time an evaluation is examined on

different color versions of different shape and natural image datasets.
The evaluation is performed on three datasets using some instances of
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GoogleNet. The results on the MPEG-7 dataset show that our proposed
method performs very well. Currently our best Top-1 result happens to be
the second best approach reported on this dataset. Furthermore, the results
show that the reduced finetuned versions of GoogleNet trained on the new
color versions or BW images of the Animal-Shape dataset outperform all
existing methods. We also remark that for classifying natural images, the
use of the RGB color space leads to the best recognition accuracies.

Most of the CNNs combined with either YCbCr and HSV color spaces
yielded marginal performance gains relative to CNNs trained on the binary
masked (BW) and Lab color space for most of the three dataset examined.
This research creates a new exploration in the use of either YCbCr or HSV
for deep colorization since they may compute useful pixel intensities for
the input layer of the CNNs that could aid to boost recognition accuracies.
Further work could involve the use of training residual or highway

networks on color variants of the MPEG-7 and Animal-Shape datasets.
The mentioned architectures may improve the current performances on
different color variants of a given BW image dataset. We also want to
study the application of other forms of data augmentation techniques (such
as color casting, elastic deformation, rotation, and scaling) to enhance
performances on different color variants of a given dataset. Finally, we
want to explore the possibility of using generative adversarial networks
for artificial colorization of images using YCbCr or HSV color spaces.





6DETECTION AND
RECOGNITION OF BADGERS
USING DEEP LEARNING

This chapter describes the use of two different deep-learning algorithms
for object detection to recognize different badgers. We use recordings of
four different badgers under varying background illuminations. In total four
different object detection algorithms based on deep neural networks are
compared: The single shot multi-box detector (SSD) with the Inception-V2
or MobileNet as a backbone, and the faster region-based convolutional
neural network (Faster R-CNN) combined with Inception-V2 or residual
networks. Furthermore, two different activation functions are compared
to compute probabilities that some badger is in the detected region: the
softmax and sigmoid functions. The results of all eight models show that
SSD obtains higher recognition accuracies (97.8% - 98.6%) than Faster
R-CNN (84.8% - 91.7%). However, the training time of Faster R-CNN
is much shorter than that of SSD. The use of different output activation
functions seems not to matter much.
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Badgers are short-legged omnivores and wild animals, and their
existence is in danger in some parts of the world. To control
this threat, some countries in Europe: United Kingdom, France,

Republic of Ireland, Northern Ireland, and the Netherlands formed the
Eurobadger collaboration with the objective to protect the existence of
badgers. To assist this protection, there is a need to deploy computer
vision systems that can aid in detecting and recognizing these animals,
whose habitat is often a network of underground tunnels (setts). This
chapter describes the use of several deep neural network approaches to
detect and classify different badgers.
Previous research (Koik and Ibrahim, 2012) suggests that the human

eye is an efficient and reliable method for animal detection. However, the
effectiveness of the human eye reduces due to tiredness and a human
is not able to focus on an animal for 24 hours a day. Therefore it is
more efficient to apply computer-vision techniques for detecting and
recognizing animals. Early research in (Burghardt and Calic, 2006) detects
animal faces using Haar-like features and the Adaboost classifier, while
tracking the animals was done using the Kanade-Lucas-Tomasi method.
Researchers have investigated different approaches to detect animals or
humans: detection of humans in motion using background subtraction
(BG) (Chen, 2009), using frame differences with theW4 algorithm (Sengar
and Mukhopadhyay, 2017), using background frame differences based on
Gaussian functions (Liu and Hou, 2012), and the combination of BG and
three-frame differencing (Liu et al., 2016a).
Since the emergence of deep neural networks in the computer vision

community, they have gained a lot of attention and successes for solving
different learning tasks such as classification of objects, plants, and ani-
mals (Krizhevsky et al., 2012), (Szegedy et al., 2015), (He et al., 2016a),
classifying wild-animals (Okafor et al., 2016), and recognizing cows with
unmanned aerial vehicles (UAVs) using data-augmented images (Okafor
et al., 2017, 2018). Concerning wildlife monitoring and conservation, the
authors in (Christiansen et al., 2017) investigated an automated detection
and classification method of animals or non-animals using thermal images.
Their method is based on the discrete cosine transform for feature extrac-
tion and k-nearest neighbors for classification. The research in (Gonzalez
et al., 2016) approaches wildlife monitoring using UAVs that use thermal
image acquisition and a video processing pipeline to provide automatic
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detection, classification, and tracking of wildlife in a forest or open area.
Recent research in (He et al., 2016c) unites some scientists with the objec-
tive of monitoring wildlife. Their study showed that convolutional neural
networks outperform a more classical technique based on the bag of visual
words with a support vector machine in their wildlife detection challenge.

To the best of our knowledge, no research has been done concerning
the detection and recognition of different badgers. The challenge is that
some of the examined badgers have very similar color appearances, and
therefore accurately discriminating the various badgers could be a difficult
problem for computer vision algorithms.
Contributions: This chapter proposes the use of several object detec-

tion algorithms based on deep neural networks for detecting and recog-
nizing badgers from video data. For this, a comparison is made between
two neural network based detectors: SSD (Liu et al., 2016b) and Faster
R-CNN (Ren et al., 2015). SSD is combined with the Inception-V2 (Ioffe
and Szegedy, 2015) or MobileNet (Howard et al., 2017) as a backbone
and the Faster R-CNN detector is combined with either Inception-V2 or
Residual networks (He et al., 2016a) with 50 layers (ResNet-50) as feature
extractors. Furthermore, we compare the use of two output activation
functions: the softmax and sigmoid function. For the experiments, we
use several videos recorded with a low-resolution camera. The results
show that most of the trained SSD detectors significantly outperform the
different variants of the Faster R-CNN detector. All the Faster R-CNN
methods are computationally much faster than the SSD techniques for
training the system, although for testing SSD is a bit faster.
Outline: Section 6.1 describes the dataset used and the preprocessing

steps. Section 6.2 explains the detection algorithms and the experimental
setup for training the models. Section 6.3 presents the results. Section 6.4
concludes the paper and provides directions for future research.

6.1 Dataset and Preprocessing
The dataset is based on videos of different badgers collected by the foun-
dation of Das & Boom1. The dataset contains four individual instances of

1 http://www.dasenboom.nl/
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badgers with a total number of 51 videos. The badger classes (identities)
are: badger_esp, badger_iaco, badger_looi, and badger_strik. The bad-
gers were recorded in 2016 and 2017 at the Badger Rescue Center of Das
& Boom in the Netherlands. Additionally some videos and photos were
made at release locations for badger rehabilitation purposes. To identify
each badger, they are micro-chipped so the animal can be tracked during
captivity and identified after release.

The streaming lengths (Ts) of the videos vary in the range between 15
and 60 seconds. We extracted approximately a frame per second, for which
we developed a script that extracts (Ts± 2) video frames. We remark
that some frames do not contain the existence of badgers and such frames
are not used in our experiments. The details of the used dataset are shown
in Table 24. Some example images of the used dataset are shown in Figure
30.

Table 24: Dataset description
Badger Class No. of Videos Dataset-split (frames) Ts(s)

Train Test
Badger_esp 7 328 28 59
Badger_iaco 28 323 30 15
Badger_looi 9 437 61 59
Badger_strik 7 372 62 60
Total 51 1460 181

We now describe how we made the ground truth annotations for the
detection task. We used one video to create the images for the test set for
each of the classes except for Badger_iaco where two videos are used in
the test set. The remaining videos are used to create the train set. Manual
extraction of the bounding box containing the existence of a badger was
done using the LabelImg2 tool. The used tool provides the annotation of a
given image, and it is saved in the .xml file format. Each of the annotation
files contains 4 coordinates representing the location of the bounding box

2 //github.com/tzutalin/labelImg
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Figure 30: Example images present in the Badger dataset; where each col-
umn represents: Badger_esp, Badger_iaco, Badger_looi, and
Badger_strik respectively. The yellow arrows in column two indicate
the existence of badger_iaco under poor illumination conditions (en-
vironment). Note that most videos were shot while the badgers were
in captivity for a while, although some videos were shot in the wild.

surrounding the badger, the label and the file path to the images. We
employed the Pascal VOC format.

6.2 Methods
This section describes the used deep neural network detection frameworks.
Figure 31 shows the overall network pipeline that consists of data pre-
processing as presented in Section 6.1, training the CNN to obtain the
different detection models and their corresponding real-time deployment.

6.2.1 SSD with Inception-V2

The Single Shot multi-box-Detector (SSD) (Liu et al., 2016b) is a detection
framework that employs feed-forward convolutional neural networks for
prediction of object classes and anchor offsets, with no consideration for
second phase classification. Instead, it uses non-maximum suppression
that allows the final detection of the objects in a single pass. A unique
characteristic of this framework is that multi-scale convolutional bounding
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Figure 31: Overall pipeline for the real-time detection systems; the first box
accounts for the data-preprocessing, the second box represents the
training of the CNN detection system, and the last box provides the
network the inference generator and visual monitoring deployment
system in the testing phase.

box outputs are attached to several feature maps at the top of the network
layer. At the bottom or base portion of the network, the feature extraction
method Inception-V2 (Ioffe and Szegedy, 2015) increases the breadth
and depth of the network with a quite low computational complexity
due to the used inception modules. The Inception-V2 extracts feature
maps from the input images. The combination of SSD and Inception-V2
is called SSD-Inception-V2 (Maeda et al., 2018). We examine two forms
of classification activation functions; sigmoid and softmax. This results in
two variants of this approach.

Network Setup: we have trained the network using pre-trained weights
ssd_inception_v2 _coco_2017_11_17, originally trained by a group of
Google researchers. The pre-trained weights contain information from
a subset of the Microsoft common object in context (COCO) dataset
(Lin et al., 2014) containing a total of approximately 328K images with
different object classes. We further trained the network using badger
images with bounding boxes and class labels as input to the training
algorithm. This use of pre-trained weights has the benefit of less training
time compared to training random weights from scratch that demands
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longer computing times. During training of the network, we adopted a
similar experimental setup as in (Liu et al., 2016b) because it yields good
performances. The network parameters include; the original input image
frames contain 427× 240 pixels and are resized online to 300× 300 pixels,
the convolutional box predictor uses a prediction dropout probability 0.8,
kernel size 3× 3 and a box-code size set to 4. The root mean square
propagation (RMSprop) optimization algorithm is used for optimizing
the loss functions trained for 40,000 steps using the following parameters;
a learning rate of 0.004, decay factor 0.95, and decays at an interval of
16,000 steps. At the non-maximum suppression part of the network a score
threshold of 1× 10−8 is used with an intersection of union (IoU) threshold
of 0.6, both the classification and localization weights are set to 1.

6.2.2 SSD with MobileNet-V1

This method also uses SSD (Liu et al., 2016b) for detection while the
MobileNet-V1 (Howard et al., 2017) as the base network is used as feature
extractor. A MobileNet is a neural network based feature extractor that
employs depth-wise separable filters for extracting feature maps from a
given image. The depth-wise separable convolution in this network involves
the integration of depth-wise convolution and 1× 1 point-wise convolution.
The merit of this approach is that it reduces computational cost com-
pared to standard convolution (Howard et al., 2017). The output from the
MobileNet is further processed using SSD. The method is referred to as
SSD-MobileNet-V1. Additionally, we consider two forms of classification
activation functions: sigmoid and softmax. This results in two variants of
this method.

Network Setup: we have trained the network using pre-trained weights
ssd_mobilenet_v1 _coco_2017_11_17 from the COCO dataset as was
explained in the previous subsection, for training our custom network
using the badger images as input to the SSD-MobileNet-V1 system. The
training process uses similar hyperparameters as described in the previous
subsection.
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6.2.3 Faster R-CNN with ResNet-50

The Faster R-CNN algorithm (Ren et al., 2015) is an improvement of
Fast R-CNN (Girshick, 2015). In this network, the working operation of
the Faster R-CNN involves two phases. The first phase requires the use
of a region proposal network (RPN) which allows concurrent prediction
of object anchors and confidence (objectiveness) from some intermediate
layers. Note that a feature extraction network can be used for this purpose,
in this case, a residual network with a depth of 50 layers (ResNet-50) (He
et al., 2016a) is used. The second phase requires information from the first
phase to make an accurate prediction of the class label and its bounding
box refinement. Additionally, we made consideration of the classification
activation functions that were earlier discussed in the previous subsections.
Hence this results in two variants of this network.

Network Setup: we have trained the network using pre-trained weights
faster_rcnn_resnet50 _coco_2018_01_28 from the COCO dataset. The
training of the network factored in some modified experimental setups as
in (Ren et al., 2015). The original input image (badger) to the network
contains 427× 240 pixels and is resized online with an aspect ratio of
min-max dimensions [600, 1024] during training. As earlier discussed the
network comprises of two phases. The first phase initiates a grid-anchor
of size 16 × 16 pixels with scales [0.25, 0.5, 1.0, 2.0], a non-maximum-
suppression-IoU-threshold set to 0.7, the localization loss weight 2.0,
objectiveness weight 1.0 with an initial crop size of 14× 14 pixels, kernel
size 2× 2 with strides set to 2. The second phase computes the prediction
score with IoU-threshold set to 0.6; the SGD optimizer optimizes the loss
functions using an initial learning rate 0.0002 and momentum value 0.9.
Again, the network was trained for 40,000 steps.

6.2.4 Faster R-CNN with Inception-V2

The Faster R-CNN detector employs an Inception V2 feature extractor
for extracting useful feature maps from an input image. The intermediate
layer from the Inception module uses the RPN component of the network
for prediction of object anchors and confidences. Similar procedures as
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explained in (Ren et al., 2015) were followed.

Network Setup: we have trained the network using pre-trained weights
faster_rcnn_inception _v2_coco_2018_01_28 from the COCO dataset.
The training of our custom network employs the badger images as input to
the Faster-RCNN-Inception-V2 system. The training process uses similar
hyperparameters as described in the previous subsection.

All the experiments were carried out using the Tensorflow object de-
tection API framework on a Ge-Force GTX 960 GPU model, and the
operating system platform employed is Ubuntu 16.0. We modified the
deployment script in the Tensorflow object detection API, by providing
the possibility to evaluate all images in the test directory instead of ap-
plying restrictions. Moreover, we also use our own script to compute the
performance index metrics of the used methods. The next section discusses
the performance and overall training time for each of the methods.

6.3 Results
The overall training time for each of the used methods is reported in
Table 25. The table shows that the training time of Faster R-CNN is much
shorter than the training time of SSD, and the use of Inception-V2 leads
to the shortest training times. The frame rates show that most of the
methods can analyze 0.8 - 1.5 images per second using our hardware, and
SSD is a bit faster than Faster R-CNN for deployment.

We carried out two experimental runs and computed the average preci-
sion, recall and accuracy, based on the predicted class label in a detected
box. The standard deviations for all the methods are ≤ 1.4%, which
indicates that the performances of the techniques are consistent.
The summary of the average performance indices and the standard

deviations for each of the methods is presented in Table 26. From this
table, we draw the conclusion that SSD-Inception-V2 for both output
functions and the SSD-MobileNet-V1-Sigmoid outperforms all the Faster
R-CNN variants with p < 0.05 significance level.

The performance index from the SSD-network variants provides a more
precise detection compared to the Faster R-CNN network variants. The
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Table 25: Average time evaluation for the different detection systems

Methods (CNN Models) Training Time Testing Frame
Time Improvement Time Rate (f/s)

Faster_RCNN-Inception_V2_Sigmoid 3h, 21m ×3.0 222s 0.82
Faster_RCNN-Inception_V2_Softmax 3h, 23m ×2.9 211s 0.86
Faster_RCNN-ResNet-50-Sigmoid 5h, 37m ×1.4 268s 0.68
Faster_RCNN-ResNet-50-Softmax 5h, 44m ×1.3 267s 0.68
SSD_Inception_V2_Softmax 10h, 45m ×0.24 162s 1.12
SSD_Inception_V2_Sigmoid 10h, 46m ×0.24 163s 1.11
SSD_MobileNet_V1_Softmax 13h, 16m ×0.01 120s 1.51
SSD_MobileNet_V1_Sigmoid (Baseline) 13h, 21m −−− 122s 1.48

lower precision in the Faster R-CNN may have arisen due to localization
bias problems. Figure 32 shows some examples of the detection scores of
badgers within a given image during testing evaluation. From this figure,
we observe that the Faster R-CNN methods misclassified this particular
example of badger_strik (gray box) as badger_esp (green box) as shown
in sub-images within cells (3,2) and (4,2). Hence, this explains the lower
performance index using the Faster R-CNN methods compared to the SSD
network variants. From an application standpoint, it could be profitable to
use Inception-V2 as the backbone for the SSD detector, since it presents
more precise detections of the objects of interest. Additionally, the results
suggest that SSD-based networks are useful in handling localization bias
problems.
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Table 26: Average performances for the different detection and recognition sys-
tems

Methods (CNN Models) Performance Index
Precision Recall Accuracy

SSD_Inception_V2_Softmax 0.988± 0.012 0.986± 0.014 0.986± 0.014
SSD_Inception_V2_Sigmoid 0.986± 0.003 0.986± 0.004 0.986± 0.004
SSD_MobileNet_V1_Sigmoid 0.985± 0.005 0.983± 0.006 0.983± 0.006
SSD_MobileNet_V1_Softmax 0.978± 0.011 0.978± 0.011 0.978± 0.011
Faster_RCNN-Inception_V2_Softmax 0.942± 0.009 0.917± 0.011 0.917± 0.011
Faster_RCNN-Inception_V2_Sigmoid 0.945± 0.003 0.914± 0.008 0.914± 0.008
Faster_RCNN-ResNet-50-Sigmoid 0.936± 0.000 0.890± 0.000 0.890± 0.000
Faster_RCNN-ResNet-50-Softmax 0.921± 0.003 0.848± 0.003 0.848± 0.003

Figure 32: Testing detection confidence prediction of the badger individual in-
stances using different neural networks detection methods: the first row
indicates detection using ssd_mobilenet_v1_softmax, the second row
shows the detection using ssd_inception_v2_sigmoid, the third row
shows the detection using faster_rcnn_inception_v2_softmax, and
the last row shows the detection using faster_rcnn_resnet50_sigmoid.
Note that each of the columns represents the badger individual in-
stances in the order; Badger_esp, Badger_strik, Badger_looi, and
Badger_iaco respectively.
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6.4 Remarks
Real-time detection using deep learning can be used for many localization
and identification tasks. In this chapter, several deep neural networks were
used to detect and classify different badgers using a novel animal dataset.
We compared the single shot multi-box detector (SSD) combined with
Inception-V2 or MobileNet, to faster-region-based convolutional neural
network (Faster R-CNN) combined with Inception-V2 or residual networks
(ResNet). We used the pre-trained networks and further trained them
on our dataset. The four detectors were combined with either a softmax
or sigmoid function for computing the output probability scores, hence
resulting in eight different models.
The results showed that SSD with the Inception-V2 as a backbone

obtains the highest mean accuracy performance (98.6%). Furthermore, we
noticed that during testing, SSD has a higher frame rate than Faster R-
CNN, although its training time is longer. Our analyses suggests that the
examined SSD methods tackle the problem of localization bias much better
than Faster R-CNN during prediction of the bounding boxes. Finally, we
noticed that the use of the sigmoid or softmax output activation functions
led to comparable results.

Future work will be directed at the scalability in the number of classes
and environments, using a much larger dataset. We also suggest that the
best found model, SSD-Inception-V2-Softmax, could be improved and
deployed into UAVs or thermal acquisition cameras, as this can help to
detect badgers in environments where they are endangered.





7DISCUSS ION

A nimal recognition and detection have received research attention
due to the need to: estimate the animal population size, protect
endangered instances of animals, allow governments of some

countries to make conservation and monitoring-policy for wildlife. This
dissertation has examined different computer vision techniques, proposing
compact deep neural network methods as feature extractors combined
with supervised learning algorithms to perform tasks such as animal
recognition, detection or both. This thesis focused on three main problems;
the relevance of neural network reduction, enhancement of images using
novel approaches to data augmentation or artificial colorization and the
use of deep neural networks for a real-time detection system.
The remaining components of this chapter provides solutions to the

three main problems and answers to the research questions. Section 7.1
highlights the recommendations for future work.

Comparison of classical methods to customized deep
learning methods

In Chapter 2, we have analyzed the best image recognition technique when
there are not many images. For this, the classical computer vision systems
were compared to deep learning systems for recognizing animal images to
answer the research question. The next research question assessed what
benefit does reducing the number of neurons from existing deep learning
architectures present. To answer this question, we proposed effectively
reduced neural network architectures with fewer network parameters
during the training of the recognition systems. One merit of the proposed
approaches is that it lowers computational costs for some approaches and
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yields almost similar levels of performance when compared to the existing
deep learning techniques. The use of deep learning methods significantly
surpasses most of the classical computer vision methods when examined
on our relatively small dataset.

Rotation-matrix data augmentation on UAV images

In Chapter 3, we introduced a novel algorithm that handles rotation
variation from unmanned aerial vehicle images without creating too many
images. To answer the research question, we proposed a rotation matrix
algorithm that transforms an image to a new image containing randomly
rotated copies of sub-images defined within a given grid of cells and angular
bounds. The advantage of the proposed algorithm (data augmentation
method) is that it enhances the pixel information in an image. It does
not require an increase in the number of images compared to conventional
data augmentation methods during training of the recognition systems.

We investigated another research question on how well the shallow depth
neural network systems and classical computer vision techniques combined
with different supervised learning algorithms can deal with recognizing
several kinds of images: rotation-matrix data augmentation and original
images. To answer the research question, we used several instances of
scratch and finetuned version of a customized GoogleNet architecture
with only three inception modules while considering two different loss
functions: cross-entropy loss and hinge-loss. The resulting deep learning
methods were compared to classical computer vision methods such as
a local descriptor (histogram of oriented gradients), a global descriptor
(color histogram) and the combination of both. These descriptors are used
for creating feature activations, and the resulting feature vectors from
each of the descriptors are passed to the supervised learning algorithm
such as radial basis and linear support vector machines, and K-nearest
neighbor.
The results suggested that the fine-tuned versions of our customized

recognition system when combined with the rotation matrix data augmen-
tation images yielded the best performance when compared to all other
approaches.
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Unification of rotation matrix and color constancy

In Chapter 4, we have developed a recognition system that is robust to
illumination variation and determined if the integration of the rotation
matrix and color constancy images can aid to yield a robust recognition
system. To answer the research question, we proposed the combination of
both color-constancy and rotation matrix data augmentation algorithms for
transforming an input image. The merit of the proposed data augmentation
method includes; it increase the number of training images especially for
those datasets with a relatively small amount of images. Furthermore, it
enhances the illumination quality of a blurred image.

Additionally, we determined what relevance the choice of grid size and
angular bound selections have for the proposed data augmentation method.
To answer the research question, we have investigated the recognition
system while considering different grid sizes and angular bound conditions
on three animal datasets. The results suggested that appropriate choices
of grid size and angular bounds can help the recognition system to obtain
robust classification accuracies.

Analysis of color spaces for image recognition in deep
learning

In Chapter 5, we have analyzed the importance of the use of color spaces
in deep learning methods. What is the performance of neural network
systems for different color space variants for the examined animal image
datasets? To answer the research question, we constructed a color conver-
sion algorithm that has the prowess to transform natural (RGB) or black
and white (BW) images to four other color spaces. Then we employed
our custom network systems to access the classification performance on
several variants of the used animal datasets.
The merit of our proposed artificial colorization algorithm combined

with the customized recognition systems yielded marginal performance
gains when compared to the original image (BW) on most of the used
datasets. Moreover, the results suggested the importance of training a
recognition system on natural images to obtain the best performance.
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Detection and recognition of badgers using deep learn-
ing

In Chapter 6, we analyzed detection algorithms for detecting and recogniz-
ing individual instances of badgers. The problem here is that localization
and finding an object of interest in an image is very difficult for classical
computer vision approaches, mainly when there exist high similarities in
object appearances.
Our research question is to determine which of the detection neural

network systems is the most suitable for application purposes, especially
in the deployment phase. To answer the research question, we have inves-
tigated several neural network based detection systems for detecting and
recognizing individual instances of badgers from video data. We considered
two detection algorithms, each combined with some network back-bones:
single shot multi-box detector combined separately to Inception V2 and
MobileNet-V1, and faster region-based convolutional neural network com-
bined separately to Inception-V2 or ResNet with 50 layers depth. The
results suggested that the single shot multi-box detector detectors signifi-
cantly outperform the faster region-based convolutional neural network
detectors.

However, all the faster region-based convolutional neural network meth-
ods are computationally much faster than the single shot multi-box de-
tector techniques for training the system, although for testing the single
shot multi-box detector is a bit faster. We suggest that the best-found
model, single shot multi-box detector combined with Inception-V2 pre-
sented better handling of the localization bias problem when compared to
other approaches. We recommend that the mentioned best model can be
deployed into real-time systems such as a drone or other data-acquisition
systems.

7.1 Future work
This dissertation has demonstrated that deep neural networks combined
with novel approaches to data augmentation and artificial colorization
often improve animal recognition compared to traditional methods.
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To further improve the compacted neural network system, there is a
need to optimize the filter sizes and hyperparameters using optimization
algorithms such as genetic algorithms or surrogate-based optimization
algorithms, as the proposed approach may improve recognition accuracies.
In the area of image enhancement, future work can develop a neural
network layer that has the prowess to learn the proposed rotation matrix
algorithm or color-constancy variant as well. This recommended network
layer could be combined with other data-augmentation methods to combat
overfitting. Additionally, more work can be directed to this research
question: will an end-to-end convolutional neural network be able to learn
all transformations or is well thought human design work needed? Another
interesting research that can be investigated is the implementation of a
neural network system with the ability to optimize the angular bounds
or grid selection for a given image dataset, to obtain highest recognition
accuracy.

Furthermore, more research work can be done to improve the detection
accuracy and computational cost by developing a novel detection algo-
rithm that can be compared to the state-of-the-art method (YOLO-v3).
Future work can also investigate improving on the real-time detection
system, by examining automatic annotation of the region of interest. Fur-
ther improvements can be made to the neural network system to factor
dataset scalability and more environmental diversities. Finally, it would
be interesting to use the neural network system to segment contours of a
given object of interest on our novel badger dataset.
Although the recognition or detection system results on the different

animal datasets show very high accuracies, in future work more images of
different animals need to be collected. This would allow computer vision
techniques based on deep neural networks to surpass human experts in
recognizing and detecting all kinds of animals.
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SUMMARY

Detection and recognition of animals under different visual appearances is
still a difficult problem within the computer vision community. This thesis
analyzes the use of different deep learning techniques and conventional
computer vision methods for performing animal recognition or detection
with relatively small training datasets. The dissertation can be summarized
into seven chapters; provides an introductory background, highlights the
objectives of the thesis and areas for future works.
Chapter 1 provides a brief introductory background to understand

animal recognition, detection, and image enhancement. Moreover, the
objectives of the dissertation, the research questions, and significant con-
tributions are explained.

Chapter 2 attempts to analyze the best image recognition method when
there are not many images. For this, we propose the use of effectively
reduced neural network systems compared to both existing network archi-
tectures (AlexNet or GoogleNet) and classical computer vision methods
(variants of the bag of visual words (BOW or HOG-BOW)) combined with
supervised learning algorithms for recognizing wild animals. In total, the
16 methods are used for performing the recognizing task on a relatively
small wild-animal dataset. The results showed that deep learning methods
either in the effectively reduced or existing forms significantly outperform
the classical techniques. Our proposed methods present two merits when
compared to the existing network architectures; it uses fewer network
parameters during training of the network and lowers computational cost
for some approaches; and secondly, the effectively reduced version of the
AlexNet architecture when trained from scratch or pretrained schemes
showed ≥ 26% decrease in computational time. The results further demon-
strated that the BOW method using color image intensities with the
max-pooling strategy outperforms the HOG-BOW combined to either
gray image intensities and the two spatial pooling strategies on the used
dataset.
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Chapter 3 analyzes the benefit of using our custom recognition system
for recognizing and handling rotation variations in a novel unmanned
aerial vehicle (UAV) image dataset without creating too many images.
For this, we propose a rotation matrix algorithm as a novel method of
data augmentation (DA). The new DA method is useful for enhancing
the pixel information in an image. Additionally, the new DA method does
not require an increase in the number of images during the training of
the network compared to the conventional DA approaches. We trained
several recognition systems: the reduced version of the GoogleNet with
three inception modules while considering two classification loss functions
(cross-entropy loss and hinge loss) using two training schemes (scratch
and finetuned). Additionally, we investigated the classical computer vision
techniques consisting of a local descriptor (HOG), a global descriptor (color
histogram) and the combination of both on low or high-resolution image
sizes. The results show that the DA methods combined with pretrained
instances of the effectively reduced neural network system yield high
classification scores.
Chapter 4 describes the development of recognition systems that are

robust to illumination variations of different visual appearances. For this
purpose, we developed a hybrid variant of the rotation-matrix data aug-
mentation that combines rotation-matrix and color constancy as another
method for DA. The proposed technique can be used to increase the num-
ber of training images especially when there exists an insufficient amount
of images within a dataset. An additional merit of the proposed method is
that it can enhance the illumination quality of a blurred image. We trained
the recognition system (a customized version of the GoogleNet) with the
cross-entropy loss function and compared the classification performances
of the color-constancy-DA (with ORIG/ROT), ORIG alone, and ROT-DA
alone on three datasets (UAV aerial images, Croatia Fish, and Bird-600).
The results show that the finetuned CNN with an appropriate selection of
the grid resolution and angular bounds for the rotation algorithm combined
with color-constancy methods yields the highest classification accuracies on
most of the used datasets. Moreover, the results show that using finetuned
CNN models with the proposed data-augmentation (ROT-DA) technique
on the Aerial UAV images leads to significantly better results than all
other approaches. Finally, the results of our proposed approaches to data
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augmentation combined with the fine-tuned CNN surpass substantially
previous research on the Bird-600 dataset.
Chapter 5 analyzes how important the use of color spaces is in deep

learning. For this, we construct a color conversion algorithm that has
the potential to transform a natural (RGB) or black and white (BW)
image to four other color spaces. Then we employed our custom network
to access the classification performances on several variants of the used
animal datasets. We propose a color conversion algorithm, which presents
the following merits: 1) It can transform binary masked (BW) images to
images represented in different color spaces (RGB, YCbCr, HSV, Lab),
which may aid to boost the CNN classification performance, and 2) It is
an efficient algorithm and easy to implement or use. The results show that
training a CNN on artificially colorized images or the original BW images,
yields almost similar performance levels on the Animal-Shape dataset and
this indicates that the use of different spaces could be an alternative. Still,
the results of the CNN architecture on the MPEG-7 dataset show that
our system obtains the second best-reported result on this dataset. Lastly,
the results of the CNN applied to the Wild-Anim dataset show that the
use of the natural RGB color space is essential, as it obtains significantly
better results than using other color spaces.
Chapter 6 analyzes detection algorithms for detecting and recognizing

individual instances of badgers. The problem here is that the animals
(badgers) under study exhibit similarities in color appearance, and therefore
using classical approaches may not be very suitable for discriminating
between the several individual instances of this specific animal. One
possible alternative to tackle this problem is to compare two neural
network based detectors: SSD and Faster R-CNN. SSD is combined with
the Inception-V2 or MobileNet as a backbone, and the Faster R-CNN
detector is combined with either Inception-V2 or Residual networks with
50 layers (ResNet-50) as feature extractors. Furthermore, we compare
the use of two output activation functions: the softmax and sigmoid
function. For the experiments, we use several videos recorded with a
low-resolution camera. The results show that most of the trained SSD
detectors significantly outperform the different variants of the Faster
R-CNN detector. All the Faster R-CNN methods are computationally
much faster than the SSD techniques for training the system, although
for testing SSD is a bit faster.
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Chapter 7 provides the lessons learned from each of the stated objectives
of this thesis and highlights possible areas for future work. An area of fur-
ther research is to employ a segmentation based algorithm for segmenting
regions of interest from a localized region, which can be very useful to
improve a recognition and detection system.



SAMENVATTING

Detectie en herkenning van dieren in verschillende visuele verschijningen
is nog altijd een moeilijk probleem in de computer vision-gemeenschap.
Deze scriptie onderzoekt de toepassing van verschillende deep learning-
technieken en conventionele computer vision-methodes voor herkenning
en detectie van dieren met relatief kleine datasets voor training. De dis-
sertatie wordt samengevat in zeven hoofdstukken; het geeft een inleidende
achtergrond, benoemt het doel van de scriptie, en geeft suggesties voor
verder onderzoek.

Hoofdstuk 1 verschaft een korte introducerende achtergrond om het
herkennen en detecteren van dieren, en verbeteren van afbeeldingen te
begrijpen. Verder worden de doelen van de dissertatie, de onderzoeksvraag,
en significante bijdragen uitgelegd.

Hoofdstuk 2 biedt een analyse van de beste methode voor beeldherken-
ning in situaties met weinig afbeeldingen. Hiervoor stellen we voor om
gebruik te maken van effectief gereduceerde neurale netwerken, vergeleken
met zowel bestaande netwerkarchitecturen (AlexNet en GoogleNet) als
klassieke computer vision-methodes (varianten van de bag of visual words
(BOW of HOG-BOW)), gecombineerd met supervised learning-algoritmes
voor het herkennen van wilde dieren. In totaal worden 16 methodes ge-
bruikt om de herkenningstaak uit te voeren op een relatief kleine dataset
van wilde dieren. Uit de resultaten blijkt dat de deep learning-methodes
in zowel de effectief gereduceerde als de bestaande vorm significant beter
presteren dan de klassieke technieken. Onze voorgestelde methode heeft
twee voordelen ten opzichte van de bestaande netwerkarchitecturen: er
zijn minder netwerkparameters nodig tijdens de training van het netwerk
en in sommige situaties is minder rekenkracht nodig; en ten tweede wordt
de rekentijd verlaagd met ≥ 26% bij de effectief gereduceerde versie van de
AlexNet-architectuur, indien getraind from scratch of met een pretrained
systeem. Ook blijkt uit de resultaten dat de BOW-methode gebruikmak-
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end van de intensiteiten van kleurenafbeeldingen met de max-pooling-
strategie, beter presteert dan de HOG-BOW-methode met intensiteiten
van zwart-witafbeeldingen met de twee ruimtelijke pooling-strategieën op
de gebruikte dataset.

Hoofdstuk 3 analyseert de voordelen van een op maat gemaakt herken-
ningssysteem voor herkenning en verwerking van geroteerde varianten van
een nieuwe dataset met afbeeldingen van een onbemand luchtvaartuig
(unmanned aerial vehicle; UAV), zonder te veel afbeeldingen te creëren. Hi-
ervoor stellen we voor om een rotatiematrixalgoritme als nieuwe methode
voor data augmentation (DA) te gebruiken. Deze nieuwe DA-methode is
nuttig voor het verbeteren van de pixelinformatie in een afbeelding. Boven-
dien zorgt de nieuwe DA-methode niet voor een toename van het aantal
afbeeldingen voor training in het netwerk vergeleken met conventionele
DA-aanpakken. We hebben verschillende herkenningssystemen getraind:
de gereduceerde versie van GoogleNet met drie inception-modules, waarbij
we twee loss-functies voor de classificatie (cross-entropy loss en hinge loss)
en twee trainingsmethodes (scratch en finetuned) vergelijken. Bovendien
hebben we de klassieke computer vision-technieken onderzocht, bestaande
uit een local descriptor (HOG), een global descriptor (kleurhistogram),
en de combinatie van beide op afbeeldingen van zowel lage als hoge res-
olutie. Uit de resultaten blijkt dat de DA-methodes gecombineerd met
pretrained systemen van het effectief gereduceerde neurale netwerk hoge
classificatiescores behaalt.

Hoofdstuk 4 beschrijft de ontwikkeling van herkenningssystemen die
robuust zijn tegen varianten in belichting of verschillende visuele verschi-
jningen. Hiervoor hebben we een hybride variant van het rotatiematrix-
DA-algoritme ontwikkeld die de rotatiematrix en kleurvastheid combineert
als andere DA-methode. Deze voorgestelde techniek kan gebruikt worden
om het aantal trainingsafbeeldingen te vergroten wanneer een dataset
onvoldoende afbeeldingen bevat. Een extra voordeel van de voorgestelde
methode is dat deze de belichtingskwaliteit van onscherpe afbeeldingen kan
verbeteren. We hebben een herkenningssysteem getraind (een aangepaste
versie van GoogleNet) met de cross-entropy loss-functie en de classifi-
catieprestaties vergeleken van de kleurconstantie-DA (met ORIG/ROT),
enkel ORIG, en enkel ROT-DA op drie datasets (UAV-luchtfotos, Croatia
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Fish, en Bird-600). Uit de resultaten blijkt dat de finetuned CNN met
een geschikte instelling van de rasterresolutie en hoekgrenzen voor het
rotatiealgoritme, gecombineerd met kleurconstantiemethodes de hoog-
ste classificatienauwkeurigheid behaalt bij de meeste van de gebruikte
datasets. Bovendien blijkt uit de resultaten dat het gebruik van finetuned
CNN-modellen met de voorgestelde DA-techniek (ROT-DA) voor de UAV-
luchtfotȯs tot significant betere resultaten leidt dan alle andere aanpakken.
Tenslotte blijkt dat de resultaten van onze voorgestelde DA-aanpak gecom-
bineerd met de finetuned CNN, de resultaten van eerder onderzoek op de
Bird-600-dataset substantieel overtreffen.

Hoofdstuk 5 analyseert het belang van kleurruimtes in deep learning.
Hiervoor bouwen we een kleurconversiealgoritme waarmee natuurlijke
(RGB) en zwart-wit (BW) afbeeldingen naar vier andere kleurruimtes
getransformeerd kunnen worden. Daarna hebben we ons op maat gemaakte
netwerk ingezet om de classificatieprestaties op verschillende varianten
van de gebruikte dierendatasets te meten. We stellen een kleurconversieal-
goritme met de volgende eigenschappen voor: 1) het kan binary masked
(BW) afbeeldingen transformeren naar afbeeldingen in verschillende kleur-
ruimtes (RGB, YCbCr, HSV, en Lab), wat de classificatieprestatie van
het CNN kan verbeteren, en 2) het is een efficient algoritme dat eenvoudig
te implementeren of gebruiken is. Uit de resultaten blijkt dat het trainen
van een CNN op kunstmatig gekleurde afbeeldingen of de originele BW-
afbeeldingen bijna gelijke prestatieniveaus op de Animal-Shape-dataset
haalt, wat aanduidt dat het gebruik van verschillende kleurruimtes een
alternatief kan zijn. Uit de resultaten van de CNN-architectuur op de
MPEG-7-dataset blijkt dat ons systeem het op een na beste resultaat
behaalt dat is gerapporteerd voor deze dataset. Tenslotte blijkt uit de re-
sultaten van de CNN toegepast op de Wild-Anim-dataset, dat het gebruik
van de natuurlijke RGB-kleurruimte essentieel is omdat deze significant
betere resultaten behaalt dan andere kleurruimtes.

Hoofdstuk 6 analyseert detectiealgoritmes voor detectie en herkenning
van individuele exemplaren van dassen. Het probleem is dat de dieren
(dassen) in het onderzoek vergelijkbare kleurverschijningen hebben, en de
klassieke aanpakken hierom mogelijk niet geschikt zijn voor het onderschei-
den van verschillende individuele exemplaren van dit specifieke dier. Als
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mogelijk alternatief om dit probleem aan te pakken vergelijken we twee de-
tectors gebaseerd op neurale netwerken: SSD en Faster R-CNN. SSD wordt
gecombineerd met Inception-V2 of MobileNet als backbone, en de Faster
R-CNN-detector wordt gecombineerd met Inception-V2 of een residual
netwerk met 50 lagen (ResNet-50) als feature extractor. Bovendien vergeli-
jken we het gebruik van twee output activation-functies: de softmax- en
sigmoid-functie. Voor de experimenten gebruiken we verschillende video′s
die zijn opgenomen met een lageresolutiecamera. Uit de resultaten blijkt
dat de meeste van de getrainde SSD-detectors significant beter presteren
dan de verschillende varianten van de Faster R-CNN-detectors. Alle Faster
R-CNN-methodes zijn in rekentijd veel sneller dan de SSD-technieken bij
het trainen van het systeem, terwijl SSD voor het testen een beetje sneller
is.

Hoofdstuk 7 behandelt de geleerde lessen voor elk van de genoemde
doelen van deze scriptie, en suggesties voor verder onderzoek. Een gebied
voor verder onderzoek is het gebruik van segmentatie-gebaseerde algo-
ritmes om regions of interest te segmenteren van lokale gebieden, wat erg
nuttig kan zijn om herkennings- en detectiesystemen te verbeteren.
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