694 research outputs found

    Deformable meshes for shape recovery: models and applications

    Get PDF
    With the advance of scanning and imaging technology, more and more 3D objects become available. Among them, deformable objects have gained increasing interests. They include medical instances such as organs, a sequence of objects in motion, and objects of similar shapes where a meaningful correspondence can be established between each other. Thus, it requires tools to store, compare, and retrieve them. Many of these operations depend on successful shape recovery. Shape recovery is the task to retrieve an object from the environment where its geometry is hidden or implicitly known. As a simple and versatile tool, mesh is widely used in computer graphics for modelling and visualization. In particular, deformable meshes are meshes which can take the deformation of deformable objects. They extend the modelling ability of meshes. This dissertation focuses on using deformable meshes to approach the 3D shape recovery problem. Several models are presented to solve the challenges for shape recovery under different circumstances. When the object is hidden in an image, a PDE deformable model is designed to extract its surface shape. The algorithm uses a mesh representation so that it can model any non-smooth surface with an arbitrary precision compared to a parametric model. It is more computational efficient than a level-set approach. When the explicit geometry of the object is known but is hidden in a bank of shapes, we simplify the deformation of the model to a graph matching procedure through a hierarchical surface abstraction approach. The framework is used for shape matching and retrieval. This idea is further extended to retain the explicit geometry during the abstraction. A novel motion abstraction framework for deformable meshes is devised based on clustering of local transformations and is successfully applied to 3D motion compression

    Novel Correspondence-based Approach for Consistent Human Skeleton Extraction

    Get PDF
    This paper presents a novel base-points-driven shape correspondence (BSC) approach to extract skeletons of articulated objects from 3D mesh shapes. The skeleton extraction based on BSC approach is more accurate than the traditional direct skeleton extraction methods. Since 3D shapes provide more geometric information, BSC offers the consistent information between the source shape and the target shapes. In this paper, we first extract the skeleton from a template shape such as the source shape automatically. Then, the skeletons of the target shapes of different poses are generated based on the correspondence relationship with source shape. The accuracy of the proposed method is demonstrated by presenting a comprehensive performance evaluation on multiple benchmark datasets. The results of the proposed approach can be applied to various applications such as skeleton-driven animation, shape segmentation and human motion analysis

    Topological Schemas of Memory Spaces

    Full text link
    Hippocampal cognitive map---a neuronal representation of the spatial environment---is broadly discussed in the computational neuroscience literature for decades. More recent studies point out that hippocampus plays a major role in producing yet another cognitive framework that incorporates not only spatial, but also nonspatial memories---the memory space. However, unlike cognitive maps, memory spaces have been barely studied from a theoretical perspective. Here we propose an approach for modeling hippocampal memory spaces as an epiphenomenon of neuronal spiking activity. First, we suggest that the memory space may be viewed as a finite topological space---a hypothesis that allows treating both spatial and nonspatial aspects of hippocampal function on equal footing. We then model the topological properties of the memory space to demonstrate that this concept naturally incorporates the notion of a cognitive map. Lastly, we suggest a formal description of the memory consolidation process and point out a connection between the proposed model of the memory spaces to the so-called Morris' schemas, which emerge as the most compact representation of the memory structure.Comment: 24 pages, 8 Figures, 1 Suppl. Figur

    Rigidity controllable as-rigid-as-possible shape deformations

    Get PDF
    Shape deformation is one of the fundamental techniques in geometric processing. One principle of deformation is to preserve the geometric details while distributing the necessary distortions uniformly. To achieve this, state-of-the-art techniques deform shapes in a locally as-rigid-as-possible (ARAP) manner. Existing ARAP deformation methods optimize rigid transformations in the 1-ring neighborhoods and maintain the consistency between adjacent pairs of rigid transformations by single overlapping edges. In this paper, we make one step further and propose to use larger local neighborhoods to enhance the consistency of adjacent rigid transformations. This is helpful to keep the geometric details better and distribute the distortions more uniformly. Moreover, the size of the expanded local neighborhoods provides an intuitive parameter to adjust physical stiffness. The larger the neighborhood is, the more rigid the material is. Based on these, we propose a novel rigidity controllable mesh deformation method where shape rigidity can be flexibly adjusted. The size of the local neighborhoods can be learned from datasets of deforming objects automatically or specified by the user, and may vary over the surface to simulate shapes composed of mixed materials. Various examples are provided to demonstrate the effectiveness of our method

    Skeleton-based canonical forms for non-rigid 3D shape retrieval

    Get PDF
    The retrieval of non-rigid 3D shapes is an important task. A common technique is to simplify this problem to a rigid shape retrieval task by producing a bending invariant canonical form for each shape in the dataset to be searched. It is common for these techniques to attempt to ``unbend'' a shape by applying multidimensional scaling to the distances between points on the mesh, but this leads to unwanted local shape distortions. We instead perform the unbending on the skeleton of the mesh, and use this to drive the deformation of the mesh itself. This leads to a computational speed-up and less distortions of the local details of the shape. We compare our method against other canonical forms and our experiments show that our method achieves state-of-the-art retrieval accuracy in a recent canonical forms benchmark, and only a small drop in retrieval accuracy over state-of-the-art in a second recent benchmark, while being significantly faster

    A Revisit of Shape Editing Techniques: from the Geometric to the Neural Viewpoint

    Get PDF
    3D shape editing is widely used in a range of applications such as movie production, computer games and computer aided design. It is also a popular research topic in computer graphics and computer vision. In past decades, researchers have developed a series of editing methods to make the editing process faster, more robust, and more reliable. Traditionally, the deformed shape is determined by the optimal transformation and weights for an energy term. With increasing availability of 3D shapes on the Internet, data-driven methods were proposed to improve the editing results. More recently as the deep neural networks became popular, many deep learning based editing methods have been developed in this field, which is naturally data-driven. We mainly survey recent research works from the geometric viewpoint to those emerging neural deformation techniques and categorize them into organic shape editing methods and man-made model editing methods. Both traditional methods and recent neural network based methods are reviewed

    Shape Analysis Using Spectral Geometry

    Get PDF
    Shape analysis is a fundamental research topic in computer graphics and computer vision. To date, more and more 3D data is produced by those advanced acquisition capture devices, e.g., laser scanners, depth cameras, and CT/MRI scanners. The increasing data demands advanced analysis tools including shape matching, retrieval, deformation, etc. Nevertheless, 3D Shapes are represented with Euclidean transformations such as translation, scaling, and rotation and digital mesh representations are irregularly sampled. The shape can also deform non-linearly and the sampling may vary. In order to address these challenging problems, we investigate Laplace-Beltrami shape spectra from the differential geometry perspective, focusing more on the intrinsic properties. In this dissertation, the shapes are represented with 2 manifolds, which are differentiable. First, we discuss in detail about the salient geometric feature points in the Laplace-Beltrami spectral domain instead of traditional spatial domains. Simultaneously, the local shape descriptor of a feature point is the Laplace-Beltrami spectrum of the spatial region associated to the point, which are stable and distinctive. The salient spectral geometric features are invariant to spatial Euclidean transforms, isometric deformations and mesh triangulations. Both global and partial matching can be achieved with these salient feature points. Next, we introduce a novel method to analyze a set of poses, i.e., near-isometric deformations, of 3D models that are unregistered. Different shapes of poses are transformed from the 3D spatial domain to a geometry spectral one where all near isometric deformations, mesh triangulations and Euclidean transformations are filtered away. Semantic parts of that model are then determined based on the computed geometric properties of all the mapped vertices in the geometry spectral domain while semantic skeleton can be automatically built with joints detected. Finally we prove the shape spectrum is a continuous function to a scale function on the conformal factor of the manifold. The derivatives of the eigenvalues are analytically expressed with those of the scale function. The property applies to both continuous domain and discrete triangle meshes. On the triangle meshes, a spectrum alignment algorithm is developed. Given two closed triangle meshes, the eigenvalues can be aligned from one to the other and the eigenfunction distributions are aligned as well. This extends the shape spectra across non-isometric deformations, supporting a registration-free analysis of general motion data

    Courbure discrète : théorie et applications

    Get PDF
    International audienceThe present volume contains the proceedings of the 2013 Meeting on discrete curvature, held at CIRM, Luminy, France. The aim of this meeting was to bring together researchers from various backgrounds, ranging from mathematics to computer science, with a focus on both theory and applications. With 27 invited talks and 8 posters, the conference attracted 70 researchers from all over the world. The challenge of finding a common ground on the topic of discrete curvature was met with success, and these proceedings are a testimony of this wor

    Interactive image manipulation using morphological trees and spline-based skeletons

    Get PDF
    The ability to edit an image using intuitive commands and primitives is a desired feature for any image editing software. In this paper, we combine recent results in medial axes with the well-established morphological tree representations to develop an interactive image editing tool that provides global and local image manipulation using high-level primitives. We propose a new way to render interactive morphological trees using icicle plots and introduce different ways of manipulating spline-based medial axis transforms for grayscale and colored image editing. Different applications of the tool, such as watermark removal, image deformation, dataset augmentation for machine learning, artistic illumination manipulation, image rearrangement, and clothing design, are described and showcased on examples
    • …
    corecore