150 research outputs found

    Multidimensional Scaling on Multiple Input Distance Matrices

    Full text link
    Multidimensional Scaling (MDS) is a classic technique that seeks vectorial representations for data points, given the pairwise distances between them. However, in recent years, data are usually collected from diverse sources or have multiple heterogeneous representations. How to do multidimensional scaling on multiple input distance matrices is still unsolved to our best knowledge. In this paper, we first define this new task formally. Then, we propose a new algorithm called Multi-View Multidimensional Scaling (MVMDS) by considering each input distance matrix as one view. Our algorithm is able to learn the weights of views (i.e., distance matrices) automatically by exploring the consensus information and complementary nature of views. Experimental results on synthetic as well as real datasets demonstrate the effectiveness of MVMDS. We hope that our work encourages a wider consideration in many domains where MDS is needed

    A Graph Theoretic Approach for Object Shape Representation in Compositional Hierarchies Using a Hybrid Generative-Descriptive Model

    Full text link
    A graph theoretic approach is proposed for object shape representation in a hierarchical compositional architecture called Compositional Hierarchy of Parts (CHOP). In the proposed approach, vocabulary learning is performed using a hybrid generative-descriptive model. First, statistical relationships between parts are learned using a Minimum Conditional Entropy Clustering algorithm. Then, selection of descriptive parts is defined as a frequent subgraph discovery problem, and solved using a Minimum Description Length (MDL) principle. Finally, part compositions are constructed by compressing the internal data representation with discovered substructures. Shape representation and computational complexity properties of the proposed approach and algorithms are examined using six benchmark two-dimensional shape image datasets. Experiments show that CHOP can employ part shareability and indexing mechanisms for fast inference of part compositions using learned shape vocabularies. Additionally, CHOP provides better shape retrieval performance than the state-of-the-art shape retrieval methods.Comment: Paper : 17 pages. 13th European Conference on Computer Vision (ECCV 2014), Zurich, Switzerland, September 6-12, 2014, Proceedings, Part III, pp 566-581. Supplementary material can be downloaded from http://link.springer.com/content/esm/chp:10.1007/978-3-319-10578-9_37/file/MediaObjects/978-3-319-10578-9_37_MOESM1_ESM.pd
    • …
    corecore