11,556 research outputs found

    Connectivity-Enforcing Hough Transform for the Robust Extraction of Line Segments

    Full text link
    Global voting schemes based on the Hough transform (HT) have been widely used to robustly detect lines in images. However, since the votes do not take line connectivity into account, these methods do not deal well with cluttered images. In opposition, the so-called local methods enforce connectivity but lack robustness to deal with challenging situations that occur in many realistic scenarios, e.g., when line segments cross or when long segments are corrupted. In this paper, we address the critical limitations of the HT as a line segment extractor by incorporating connectivity in the voting process. This is done by only accounting for the contributions of edge points lying in increasingly larger neighborhoods and whose position and directional content agree with potential line segments. As a result, our method, which we call STRAIGHT (Segment exTRAction by connectivity-enforcInG HT), extracts the longest connected segments in each location of the image, thus also integrating into the HT voting process the usually separate step of individual segment extraction. The usage of the Hough space mapping and a corresponding hierarchical implementation make our approach computationally feasible. We present experiments that illustrate, with synthetic and real images, how STRAIGHT succeeds in extracting complete segments in several situations where current methods fail.Comment: Submitted for publicatio

    Orientation, sphericity and roundness evaluation of particles using alternative 3D representations

    Get PDF
    Sphericity and roundness indices have been used mainly in geology to analyze the shape of particles. In this paper, geometric methods are proposed as an alternative to evaluate the orientation, sphericity and roundness indices of 3D objects. In contrast to previous works based on digital images, which use the voxel model, we represent the particles with the Extreme Vertices Model, a very concise representation for binary volumes. We define the orientation with three mutually orthogonal unit vectors. Then, some sphericity indices based on length measurement of the three representative axes of the particle can be computed. In addition, we propose a ray-casting-like approach to evaluate a 3D roundness index. This method provides roundness measurements that are highly correlated with those provided by the Krumbein's chart and other previous approach. Finally, as an example we apply the presented methods to analyze the sphericity and roundness of a real silica nano dataset.Postprint (published version

    Towards dense object tracking in a 2D honeybee hive

    Full text link
    From human crowds to cells in tissue, the detection and efficient tracking of multiple objects in dense configurations is an important and unsolved problem. In the past, limitations of image analysis have restricted studies of dense groups to tracking a single or subset of marked individuals, or to coarse-grained group-level dynamics, all of which yield incomplete information. Here, we combine convolutional neural networks (CNNs) with the model environment of a honeybee hive to automatically recognize all individuals in a dense group from raw image data. We create new, adapted individual labeling and use the segmentation architecture U-Net with a loss function dependent on both object identity and orientation. We additionally exploit temporal regularities of the video recording in a recurrent manner and achieve near human-level performance while reducing the network size by 94% compared to the original U-Net architecture. Given our novel application of CNNs, we generate extensive problem-specific image data in which labeled examples are produced through a custom interface with Amazon Mechanical Turk. This dataset contains over 375,000 labeled bee instances across 720 video frames at 2 FPS, representing an extensive resource for the development and testing of tracking methods. We correctly detect 96% of individuals with a location error of ~7% of a typical body dimension, and orientation error of 12 degrees, approximating the variability of human raters. Our results provide an important step towards efficient image-based dense object tracking by allowing for the accurate determination of object location and orientation across time-series image data efficiently within one network architecture.Comment: 15 pages, including supplementary figures. 1 supplemental movie available as an ancillary fil

    A. Eye Detection Using Varients of Hough Transform B. Off-Line Signature Verification

    Get PDF
    PART (A): EYE DETECTION USING VARIANTS OF HOUGH TRANSFORM: Broadly eye detection is the process of tracking the location of human eye in a face image. Previous approaches use complex techniques like neural network, Radial Basis Function networks, Multi-Layer Perceptrons etc. In the developed project human eye is modeled as a circle (iris; the black circular region of eye) enclosed inside an ellipse (eye-lashes). Due to the sudden intensity variations in the iris with respect the inner region of eye-lashes the probability of false acceptance is very less. Since the image taken is a face image the probability of false acceptance further reduces. Hough transform is used for circle (iris) and ellipse (eye-lash) detection. Hough transform was the obvious choice because of its resistance towards the holes in the boundary and noise present in the image. Image smoothing is done to reduce the presence of noise in the image further it makes the image better for further processing like edge detection (Prewitt method). Compared to the aforementioned models the proposed model is simple and efficient. The proposed model can further be improved by including various features like orientation angle of eye-lashes (which is assumed constant in the proposed model), and by making the parameters adaptive. PART (B): OFF-LINE SIGNATURE VERIFICATION: Hand-written signature is widely used for authentication and identification of individual. It has been the target for fraudulence ever since. A novel off-line signature verification algorithm has been developed and tested successfully. Since the hand-written signature can be random, because of presence of various curves and features, techniques like character recognition cannot be applied for signature verification. The proposed algorithm incorporates a soft-computing technique “CLUSTERING” for extraction of feature points from the image of the signature. These feature points or centers are updated using the clustering update equations for required number of times, then these acts as extracted feature points of the signature image. To avoid interpersonal variation 6 to 8 signature images of the same person are taken and feature points are trained. These trained feature points are compared with the test signature images and based on a specific threshold, the signature is declared original or forgery. This approach works well if there is a high variation in the original signature, but for signatures with low variation, it produces incorrect results
    corecore