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Abstract

Sphericity and roundness indices have been used mainly in geology to analyze
the shape of particles. In this paper, geometric methods are proposed as an
alternative to evaluate the orientation, sphericity and roundness indices of 3D
objects. In contrast to previous works based on digital images, which use the
voxel model, we represent the particles with the Extreme Vertices Model, a
very concise representation for binary volumes. We define the orientation with
three mutually orthogonal unit vectors. Then, some sphericity indices based
on length measurement of the three representative axes of the particle can be
computed. In addition, we propose a ray-casting-like approach to evaluate a 3D
roundness index. This method provides roundness measurements that are highly
correlated with those provided by the Krumbein’s chart and other previous
approach. Finally, as an example we apply the presented methods to analyze
the sphericity and roundness of a real silica nano dataset.
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Chapter 1

Introduction

In-silicon experimentation is getting a growing interest in bioengineering and
geology where scientific data coming from real samples are used to compute
structural parameters that allow to evaluate physical properties of a sample
such as osteoporosis degree of bones, suitability of biomaterials to be used as
implants, grain shape and sphericity index in silica sand for industrial and manu-
facturing applications, among others.

In geology, the shape description of particles such as grain of sand or rocks
have been analyzed since long time to understand different natural processes.
Among the most studied parameters of shape description we can mention the
pore structure analysis [39, 30] and the orientation, sphericity and roundness,
which we study in this paper. The orientation may be defined by rotation
angles around a set of orthogonal axes [16]. Preferred orientation arises when
the shape is oriented preferentially in a certain directions or set of directions [34]
and is related to the anisotropy [26], which refers to the exhibition of different
values of a property when measured in different directions. Sphericity is a
measure of the degree to which a particle approximates the shape of a sphere,
and is independent of its size. Roundness is the measure of the sharpness of a
particle’s edges and corners. Sphericity and roundness are ratios and, therefore,
dimensionless numbers.

Sphericity and roundness are numerically quantified. However, the deter-
mination of sphericity and roundness based on Wadell’s original definition [41]
is difficult. Particle’s surface area is necessary to compute the Wadell’s spheri-
city index. This manual measurement is neither easy nor accurate. Therefore,
for practical reasons geologists typically use simplified parameters and visual
charts [20] with several categories of sphericity and roundness. There are also
methods that use 3D devices, but such imaging and interpretation are very time
consuming and not suitable for microparticles.

In this paper, we propose alternative geometric methods to evaluate the
orientation, sphericity and roundness of 3D objects. Our objective is to reduce
the time required to estimate such parameters. The contributions of this paper
are:

• A method to define the orientation based on Oriented Bounding Boxes
(OBB) that is computed using a previously developed model, the Extreme
Vertices Model (EVM) [2, 29].
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• An EVM-based method to compute a true 3D roundness index.

• Study of correlation between the developed methods and those reported
in the literature.

• A complete analysis of a real silica nano dataset applying the proposed
methods and comparing the results with others.
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Chapter 2

Related Work

2.1 Orientation

The basic method to describe the orientation of a 3D object is by means of the
eigenvectors of the covariance matrix associated to the point set of the object.
An oriented bounding box (OBB) [14] is a box which may be arbitrarily oriented
(rotated), i.e. its faces are not necessarily aligned with the main coordinate axes.
An OBB for a set of points can be created from their eigenvectors.

Preferred orientations are used to predict stiffness and strength in produc-
tion of fabric tensors [19] or to observe the mass transport phenomena in ionic
crystalline materials [33]. In geology, orientation of many clasts in a soil sample
can be collected and compared graphically to provide information about their
transport history and the characterization of depositional environments [15].

2.2 Sphericity and Roundness

Sphericity and roundness are measures of two different morphological proper-
ties. Sphericity is most dependent on elongation, whereas roundness is largely
dependent on the sharpness of angular protrusions (convexities) and indenta-
tions (concavities) from the object.

Sphericity may be calculated for any 3D object if its surface area and volume
are known. Wadell [41] defined the sphericity, Ψ, of an object as the ratio of
the nominal surface area (surface area of a sphere having the same volume as
the object) to the actual surface area of the object. This ratio is known as true
sphericity index:

Ψ =
Sn
S

=
(36πV2)

1
3

S
(2.1)

where V, S and Sn are the volume, surface area and nominal surface area
of the object respectively. The sphericity index of a sphere is 1 and, by the
isoperimetric inequality, any object which is not a sphere will have a sphericity
value less than 1.

Since manual measures of S are very difficult, other indices have been de-
fined. Several methods are based on length measurement of the three represen-
tative axes of an object [20]: a (major axis length), b (medium axis length) and
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c (minor axis length). The next equations are used frequently in geology:

Ψ = dn/a (2.2)

Ψ = (bc/a2)
1
3 (2.3)

Ψ = c/(ab)
1
2 (2.4)

Ψ = (c2/ab)
1
3 (2.5)

Eq. 2.2 is a simplified sphericity index proposed by Wadell [42], where dn
is the nominal diameter (diameter of the sphere having the same volume as
the object). The index given by Eq. 2.3 is called elliptical volume sphericity
[20]. The sphericity index given by Eq. 2.4 provides more precision for the
computation of other behavioral indices [6]. A more widely accepted sphericity
index is given by Eq. 2.5 as it correlates highly with the particle settling velocity
[37].

Concerning roundness, due to the impracticality of measuring a true 3D
roundness index, several methods work with the maximum 2D projection plane
(silhouette) of the object looking for a trade-off between accuracy and time.
Roundness (R) was defined by Wadell [41] as the ratio of the average radius of
curvature of the corners and edges of the object’s silhouette to the radius of the
maximum circle that can be inscribed.

R =
1
n

∑n
i=1 ri

rmax
(2.6)

where ri is the radius of the i-th corner curvature, n the number of corners,
and rmax the radius of the maximum inscribed circle. The value of R is 1 for a
perfectly round object and less than 1 for any other object.

Results of this method are reliable but time consuming and very impractical
as no definition of curvature was established [32]. In order to improve the time
required to estimate the roundness, Krumbein [20] created a chart (see Fig.
2.1) showing examples of pebbles for which the roundness of their silhouette
has been calculated using Eq. 2.6 and grouped them into nine classes.

After Krumbein, other methods provide estimated values that are linearly
correlated with the values given by the Krumbein’s chart (KC). A method based
on the Fourier transform [9] makes use of the sum of the amplitudes of the
first 24 coefficients of the Fourier transform. To compensate for different size
rocks fragments, the coefficients are divided by the zero-th coefficient and the
sphericity aspect is eliminated by This method shows a correlation of 0.94 with
the values of KC. An alternative approach uses granulometric methods [10].
The ratio between particle’s area before and after applying a morphological
opening on its silhouette is a roundness index. This method shows a correlation
of 0.96 with the values of KC. Discrete geometry has been used to calculate the
Wadell’s original index [32]. The curvature radius at each pixel of the silhouette
is calculated with an algorithm that relies on the decomposition of a discrete
curve into maximal blurred segments [25]. This method shows a correlation of
0.92 with the values of KC.

A true 3D roundness index of gravel shapes was proposed using a laser
scanner [17]. The idea is that the ratio between the volume and surface area of an
object reflects the roundness. As the ratio V/S tends to increase with an increase
in size, this ratio is divided by a representative gravel length. Using an ellipsoid
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Figure 2.1: Krumbein’s chart for visual determination of roundness [20].

as analog of gravel shape, the geometric mean of the three representative axes
of the object (a, b, and c) is used as the representative length. The resulting
index of the next equation shows a correlation of 0.814 with the values of KC.

R =
V

S(abc)
1
3

(2.7)

However, the use of a laser scanner to compute the roundness is a very time
consuming process for multiple shapes, and not suitable for microparticles.
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Chapter 3

Representation Model

The most common model to represent 3D binary digital images is the voxel
model, but several proposals represent these images in a more compact way. A
binary voxel model represents an object as the union of its foreground voxels
and its continuous analog is an orthogonal pseudo-polyhedra (OPP) [18, 21].
In this paper, we represent 3D binary digital images as well as OPP with the
Extreme Vertices Model.

OPP have been used in 2D to represent the extracted polygons from nu-
merical control data [27]. Some 3D applications of OPP are: general computer
graphics applications such as geometric transformations and Boolean operations
[1, 5, 12], connectivity computation [7], virtual porosimetry [30], skeleton com-
putation [11, 22], and orthogonal hull computation [3, 4]. OPP have been also
used for model simplification [8].

3.1 Extreme Vertices Model

Let P be an OPP, a brink is the maximal uninterrupted segment built out of a
sequence of collinear and contiguous two-manifold edges of P and its ending ver-
tices are called extreme vertices (EV). An OPP can be represented in a concise
way with a sorted set of its EV and such representation scheme is called EVM.
EVM is an implicit B-Rep model and therefore represents OPP unambiguously
[40].

EVM only needs to store EV, with no additional information such as neigh-
boring relations among vertices, edges, or faces, since all these elements can be
computed from them. Therefore, the storage requirements for an OPP P in its
EVM representation is O(n), n being the number of EV, and n ≤ v, where v is
the total number of vertices. See Fig. 3.1. For more details concerning EVM
see [2] and [29].
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Figure 3.1: An EVM-encoded OPP. Extreme vertices marked with dots; a ver-
tical brink from vertex a to c is marked where these vertices are both extreme
vertices while vertex b is not.
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Chapter 4

Sphericity and Roundness
Evaluation

In this chapter, we present methods to evaluate the orientation, sphericity and
roundness of particles represented with EVM. In order to compute the three
representative axes of the object, its oriented bounding box (OBB) is obtained
first (see Sec. 4.1). Then, several sphericity indices can be computed (see Sec.
2.2).

Additionally, a 3D roundness index is proposed. Sec. 4.3 presents a ray-
casting-like approach based on EVM that uses basic geometric methods such as
a transformation matrix and the ray-ellipsoid intersection.

4.1 Oriented Bounding Box Computation

An OBB can be represented with a center point c, three edge half-lengths h1,
h2 and h3, and an orientation specified with three mutually orthogonal unit
vectors v1, v2 and v3 (see Fig. 4.1):

OBB =

{
c +

3∑
i=1

xihiv
i : xi ∈ [−1, 1]

}
(4.1)

The OBB of an object can be constructed by examining an associated point
set. This set forms a cloud and have some statistical distribution characterized
by a mean m = (m1,m2,m3), and a covariance matrix C. The mean describes
the center of mass and the covariance matrix contains information about how
the cloud is approximately spread out. Eigenvectors of that matrix give the
orientation along which the cloud has maximum and minimum statistical spread
[13].

The OBB produced with the covariance method may not be a tight fit if the
points are not well distributed. However, as the set of points to be evaluated are
binary volumes coming from real samples, a good distribution can be expected.

Given a set of n 3D points, viewed as vectors with initial point at the origin:
p1,p2, . . . ,pn, such that pk = (pk1 , p

k
2 , p

k
3), the mean is defined as:

mi =
1

n

n∑
k=1

pki , i = 1, 2, 3 (4.2)
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Figure 4.1: A 3D arbitrarily oriented bounding box.

and the 3×3 covariance matrix C is defined as:

Cij =

(
1

n

n∑
k=1

pki p
k
j

)
−mimj , i, j = 1, 2, 3 (4.3)

The normalized eigenvectors of matrix C (v1, v2 and v3 ) represent the
orientation vectors of the OBB. The lower (L = {l1, l2, l3}) and upper (U =
{u1, u2, u3}) extremes along each axis are given by projecting all points pk onto
each eigenvector and checking the minimum (m) and maximum (M) coordinates
in each direction:

L =
{
m(v1 · pk), m(v2 · pk),m(v3 · pk)

}
, ∀ k = 1, . . . , n (4.4)

U =
{
M(v1 · pk), M(v2 · pk),M(v3 · pk)

}
, ∀ k = 1, . . . , n (4.5)

As the i-th axis of the OBB is aligned with vi, the OBB’s edge half-length
hi along this axis is given by:

hi =
ui − li

2
, i = 1, 2, 3 (4.6)

and the center point c of the OBB is given by:

c =
1

2

3∑
i=1

(li + ui)v
i (4.7)

These parameters define also the ellipsoid inscribed into the OBB, whose
principal axes have lengths a = 2h1, b = 2h2, and c = 2h3. We prefer to
represent the ellipsoid with the full-axes length instead of the semi-axes length
in order to be consistent with the equations used to compute the sphericity and
roundness indices (see Sec. 2.2).

The covariance matrix can be built from the corresponding voxel model
using the voxel coordinates as representative points. The first contribution of
this paper is to use the extreme vertices (EV) of the EVM-represented object
as the set of representative points. Although the number of EV is significantly
smaller than the number of voxels, the OBB produced from the EVM is very
similar to the OBB produced from the voxel model. From the analysis of the test
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Figure 4.2: Four rock samples and their OBB. The EVM-based and voxel-based
OBB in continuous (blue) and stippled (red) line respectively.

samples, the maximum volume difference computed between a voxel-based and
a EVM-based OBB was less than 8.5%, while the computation time is greatly
reduced in the EVM-based method. Fig. 4.2 shows some samples and their
computed OBB.

4.2 Sphericity Computation

Given an input object, the OBB is computed first. Then, the sphericity indices
given by Eq. 2.2 to 2.5 can be directly computed from the three principal axes
lengths (a, b, c) of the inscribed ellipsoid. To compute the true sphericity index
(Eq. 2.1), the surface area of the object is required. Because of the nature
of EVM, the surface area of an EVM-represented object is measured with a
block-form surface extraction algorithm [31] and therefore, this method is not
suitable to estimate the object’s continuous surface area. However, there are
voxel-based methods that better estimate this value for binary volumes.

The surface area is estimated using a voxel-based scheme [23, 43], which is
unbiased for random plane orientations with small error when applied to curved
surfaces. The algorithm detects all the surface voxels (voxels with 6-connectivity
to background voxels) and classifies them into nine classes (denoted S1 to S9)
according to the number and configuration of its faces that are exposed to the
background (see Fig. 4.3). Then, the surface area S, is estimated as a linear
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Figure 4.3: The nine unique surface voxel classes (modulo reflections and rota-
tions) [43].

combination of the class membership values Ni.

S =

9∑
i=1

WiNi (4.8)

The optimal computed weights Wi associated with the voxels in classes Si

are: W1 ≈ 0.894, W2 ≈ 1.3409, W3 ≈ 1.5879, W4 = 2, W5 = 8
3 , W6 = 10

3 [23],
W7 ≈ 1.79, W8 ≈ 2.68, W9 ≈ 4.08 [43].

4.3 Roundness Computation

In industrial engineering, the roundness measurement of workpieces is estimated
by doing a single 2D trace covering 360◦ of the workpiece, this process is usually
performed with a turntable-type instrument or a stylus-type instrument [28].
The deviation of the trace from a least-squares circle fit to the data at equally
spaced angles θi gives a roundness estimation of di − r, where r is the radius of
the circle and di the distance from the circle center to the trace [24]. A set of
random, uniformly distributed, rays can be traced to the surface of a reference
ellipsoid [38].

Based on this previous idea, we propose a new 3D roundness index com-
putation method. The deviations of the rays from the surface of the object
gives a roundness estimation. For efficiency purposes, instead of generating
a set of uniformly distributed rays, we propose to trace rays to each EV in
the EVM-represented object. Then, to compute the proposed EVM-roundness
index, three steps are performed:

1. Compute the object’s OBB to obtain the principal axes of the ellipsoid
inscribed in this OBB (reference ellipsoid).

2. Create a transformation matrix M, which transforms the OBB so that it
is aligned to the main coordinate axes and centered at the origin in order
to facilitate subsequent computations. Apply this transformation to all
the EV of the object.
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3. Trace a ray from the origin to each EV representing point pk of the object,
and measure the distance ∆k between pk and the point qk, where the ray
intersects the surface of the reference ellipsoid.

The first step computes the OBB with the method described in Sec. 4.1 (see
Fig. 4.4(a)). The second steps creates a transformation matrix M, which is a
composition of a translation matrix and three rotation matrices. Fig. 4.4(b)
shows the EV set of an object and the reference ellipsoid after transformation.
Note that the OBB bounds both the object and the reference ellipsoid, but the
object and the ellipsoid may intersect each other. The third step applies the
algorithm for ray-sphere intersection [36] properly adjusted for an ellipsoid (see
Fig. 4.4(c)).

The ray has an equation of the form q = p0 + tp. Let p0 be the origin
(0, 0, 0), then, the point qk = (qk1 , q

k
2 , q

k
3 ) where the ray, passing by the EV

point pk = (pk1 , p
k
2 , p

k
3), crosses the ellipsoid with center at p0 and principal

axes lengths a, b and c, can be computed solving the next quadratic equation
for t:

(a) (b)

(c)

Figure 4.4: Steps to compute the EVM-roundness. (a) Calculate the OBB. (b)
Transform the model such that the reference ellipsoid is centered at the origin
and aligned to the main coordinate axes. (c) Trace rays to each EV pk and
compute ∆k.
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t2|pk′|2 − 1 = 0, where pk′ =

(
2pk1
a
,

2pk2
b
,

2pk3
c

)
(4.9)

therefore,
qk = (tpk1 , tp

k
2 , tp

k
3) (4.10)

∆k = |pk − qk| (4.11)

We define the EVM-roundness index as the average of the distances ∆k for all
EV representing points pk. As the measurements depend on the size of the input
object, to remove the size effect, the average is divided by a length factor. There
are several alternatives for this factor, e.g., the principal axes lengths (a, b, or
c), the geometric mean of them or the corresponding arithmetic mean. We have
adopted the geometric mean because the EVM-roundness index is compared
with a method that uses this length factor. The average is also multiplied by a
factor of 10 to enhance the readability of the results.

R =
10

n(abc)
1
3

n∑
k=1

∆k (4.12)

where n is the number of extreme vertices.
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Chapter 5

EVM-roundness
Correlation

In order to show the correlation of the EVM-roundness index with the round-
ness index defined by Wadell, the silhouettes of the Krumbein’s chart (Fig. 2.1)
have been tested in a 2D version of the proposed method. Each tested image
has a resolution of ≈ 3202 pixels. Fig. 5.1 shows the relationship between
Krumbein’s roundness and EVM-roundness. These results have a linear corre-
lation of −0.898 (negative as Krumbein’s roundness index decreases while EVM-
roundness index increases). The EVM-roundness index has also been computed
applying the OBB computed from the voxel model. It results in a better, but
not very different correlation of −0.902.

For a comparison in 3D, the roundness index proposed by Hayakawa and
Oguchi (HO-roundness) (see Eq. 2.7) has also been computed. To get the
HO-roundness, the surface area of the object is measured using the voxel-based

Figure 5.1: Relationship between Krumbein’s chart roundness and EVM-
roundness.
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scheme described in Sec. 4.2.
We have used a GPL Blender extension, rock Generator (wiki.blender.org)

to create a set of thirty 3D models of rocks (see Fig. 5.2). Each model was
converted to a voxel model with a resolution of ≈ 2503 voxels. Distribution of
the set of rocks according to their computed sphericity and roundness is shown in
Fig. 5.3. The relationship between HO-roundness and EVM-roundness indices
is shown in Fig. 5.4. In this case, the results have a correlation of -0.938.

The corresponding programs have been written in C++ and tested on a PC
Intel R©Core 2 Duo CPU E6600@2.40GHz with 3.2 GB RAM and running Linux.
In this PC, the time to compute the HO-roundness index for each rock sample
is about 2 seconds, while for the EVM-roundness index, it is about 0.1 seconds.

Figure 5.2: Thirty 3D rock samples created with rockGenerator.

Figure 5.3: Distribution of the rocks samples according to their sphericity and
roundness.
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Figure 5.4: Relationship between HO-roundness and EVM-roundness.
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Chapter 6

Analysis of Real Silica nano
CT

Silica sands need to have a high sphericity, as where the more round and spheri-
cal is the particle, the more resistant that particle is to crushing or fragmenting
[35]. We have been provided with a silica nano CT by the Laboratory of Elec-
tron Nanoscopies of the University of Barcelona. It consists of a 32-bit gray
scale dataset in RAW format with dimensions 131×281×332. Some 2D slices of
this dataset are depicted in Fig. 6.1.

In order to obtain the sphericity and roundness indices, the dataset needs
to be preprocessed. This preprocessing basically consists of the next steps:

1. Convert the original dataset to a 8-bit voxel model.

2. Scale the voxel model, via trilinear interpolation, to twice its size in order
to better define the grain shapes.

3. Apply a binary threshold filter.

4. Remove noise applying morphological opening and closing operations.

Step 3 requires a threshold that allows to yield a good segmentation of the
grain shapes. The gray value histogram is shown in Fig. 6.2, in this case, high

Figure 6.1: 2D slices of a silica nano CT.
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Figure 6.2: Gray value histogram of the sample.

values of gray represent the foreground and the curve helps to determine where
the background ends and the foreground begins. Note that the curve falls off
around the value of 50. Therefore, thresholds of 45, 50 and 55 have been used
to binarize the dataset. Fig. 6.3 shows the sample after the corresponding
threshold and noise removal indicating the number of connected components
(CC) considering 6-connectivity. Observe that the threshold of 45 produce a
model having several agglomerated grains and the threshold of 55 seems to
lose information. Then, we consider that the grain shapes are better defined
applying a threshold of 50.

After the preprocessing, we compute the CC, which represent the grain par-
ticles. Fig. 6.4 shows a graph of the number of CC according to their volumes.
CC having a very small volume are not representative of a grain particle, then,
according to this graph, we consider as grains those CC with a volume larger
than 200 voxels (shapes larger than approximately 6×6×6). Therefore, the re-
sulting dataset consists of 650 CC. See Fig. 6.5 where the resulting grains are
depicted.

(a) CC=1894 (b) CC=1181 (c) CC=753

Figure 6.3: Dataset after segmentation and noise removal with thresholds (a)
45, (b) 50 and (c) 55.
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Figure 6.4: Number of connected components according to their volumes.

Figure 6.5: Resulting grain particles with volume larger than 200 voxels.

6.1 Grain Properties Computation

After the grain particles have been correctly defined, they are converted to its
EVM-representation in order to compute its sphericity and roundness indices.

The sphericity index of each connected component is computed using Eq.
2.1 and 2.5. Fig. 6.6 and 6.7 show the bar charts that represent the number
of occurrences of the corresponding sphericity index. Although the voxel-based
scheme used to compute the surface area (see Sec. 4.2) is not well suited for too
small objects, both graphs are similar and give an estimation of the sphericity
distribution.

Regarding roundness, for each connected component, its 3D roundness index
is computed using Eq. 2.7 and the presented EVM-based roundness method
(see Sec. 4.3). Fig. 6.8 and 6.9 show the bar charts that represent the number
of occurrences of the corresponding roundness indices. Again, although the
roundness indices are computed using different approaches, both graphs are
similar and give an estimation of the roundness distribution.
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Figure 6.6: Occurrences of sphericity indices using Eq. 2.1.

Figure 6.7: Occurrences of sphericity indices using Eq. 2.5.

Figure 6.8: Occurrences of roundness indices using Equation 2.7.
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Figure 6.9: Occurrences of roundness indices using Equation 4.12 (EVM-
roundness).

22



Chapter 7

Conclusions

We have presented alternative methods to compute the orientation, sphericity
and roundness of particles represented as binary volume datasets.

The method to estimate the sphericity is based on the computation of the
object’s OBB, which can be computed in a faster way directly from EVM.
From the three OBB edge lengths, several sphericity indices can be computed,
including the true sphericity index where a voxel-based scheme is applied to
estimate the real surface area of curved surfaces.

Regarding the roundness, we have proposed a new EVM-based roundness
index. The method is based on the trace of rays to the vertices of the EVM-
represented object and their intersections with a reference ellipsoid. The result-
ing roundness index shows a good correlation with the Krumbein’s chart and
a better correlation with a previous 3D roundness index. Besides, the time to
compute the proposed index is very fast compared with previous voxel-based
and manual methods.

Moreover, results of the analysis of the silica nano CT presented here have
been used by experts in nanotechnology who are interested in segmenting and
analyzing the sphericity and roundness of this sample.
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