6,822 research outputs found

    A graph-based mathematical morphology reader

    Full text link
    This survey paper aims at providing a "literary" anthology of mathematical morphology on graphs. It describes in the English language many ideas stemming from a large number of different papers, hence providing a unified view of an active and diverse field of research

    Categorical Ontology of Complex Systems, Meta-Systems and Theory of Levels: The Emergence of Life, Human Consciousness and Society

    Get PDF
    Single cell interactomics in simpler organisms, as well as somatic cell interactomics in multicellular organisms, involve biomolecular interactions in complex signalling pathways that were recently represented in modular terms by quantum automata with ‘reversible behavior’ representing normal cell cycling and division. Other implications of such quantum automata, modular modeling of signaling pathways and cell differentiation during development are in the fields of neural plasticity and brain development leading to quantum-weave dynamic patterns and specific molecular processes underlying extensive memory, learning, anticipation mechanisms and the emergence of human consciousness during the early brain development in children. Cell interactomics is here represented for the first time as a mixture of ‘classical’ states that determine molecular dynamics subject to Boltzmann statistics and ‘steady-state’, metabolic (multi-stable) manifolds, together with ‘configuration’ spaces of metastable quantum states emerging from complex quantum dynamics of interacting networks of biomolecules, such as proteins and nucleic acids that are now collectively defined as quantum interactomics. On the other hand, the time dependent evolution over several generations of cancer cells --that are generally known to undergo frequent and extensive genetic mutations and, indeed, suffer genomic transformations at the chromosome level (such as extensive chromosomal aberrations found in many colon cancers)-- cannot be correctly represented in the ‘standard’ terms of quantum automaton modules, as the normal somatic cells can. This significant difference at the cancer cell genomic level is therefore reflected in major changes in cancer cell interactomics often from one cancer cell ‘cycle’ to the next, and thus it requires substantial changes in the modeling strategies, mathematical tools and experimental designs aimed at understanding cancer mechanisms. Novel solutions to this important problem in carcinogenesis are proposed and experimental validation procedures are suggested. From a medical research and clinical standpoint, this approach has important consequences for addressing and preventing the development of cancer resistance to medical therapy in ongoing clinical trials involving stage III cancer patients, as well as improving the designs of future clinical trials for cancer treatments.\ud \ud \ud KEYWORDS: Emergence of Life and Human Consciousness;\ud Proteomics; Artificial Intelligence; Complex Systems Dynamics; Quantum Automata models and Quantum Interactomics; quantum-weave dynamic patterns underlying human consciousness; specific molecular processes underlying extensive memory, learning, anticipation mechanisms and human consciousness; emergence of human consciousness during the early brain development in children; Cancer cell ‘cycling’; interacting networks of proteins and nucleic acids; genetic mutations and chromosomal aberrations in cancers, such as colon cancer; development of cancer resistance to therapy; ongoing clinical trials involving stage III cancer patients’ possible improvements of the designs for future clinical trials and cancer treatments. \ud \u

    A Survey on Continuous Time Computations

    Full text link
    We provide an overview of theories of continuous time computation. These theories allow us to understand both the hardness of questions related to continuous time dynamical systems and the computational power of continuous time analog models. We survey the existing models, summarizing results, and point to relevant references in the literature

    Graph Signal Processing: Overview, Challenges and Applications

    Full text link
    Research in Graph Signal Processing (GSP) aims to develop tools for processing data defined on irregular graph domains. In this paper we first provide an overview of core ideas in GSP and their connection to conventional digital signal processing. We then summarize recent developments in developing basic GSP tools, including methods for sampling, filtering or graph learning. Next, we review progress in several application areas using GSP, including processing and analysis of sensor network data, biological data, and applications to image processing and machine learning. We finish by providing a brief historical perspective to highlight how concepts recently developed in GSP build on top of prior research in other areas.Comment: To appear, Proceedings of the IEE

    Homotopy in digital spaces

    Get PDF
    The main contribution of this paper is a new “extrinsic” digital fundamental group that can be readily generalized to define higher homotopy groups for arbitrary digital spaces. We show that the digital fundamental group of a digital object is naturally isomorphic to the fundamental group of its continuous analogue. In addition, we state a digital version of the Seifert-Van Kampen theorem.DirecciĂłn General de InvestigaciĂłn CientĂ­fica y TĂ©cnicaDirecciĂłn General de Enseñanza Superio

    General Adaptive Neighborhood Image Processing. Part I: Introduction and Theoretical Aspects

    Get PDF
    30 pagesInternational audienceThe so-called General Adaptive Neighborhood Image Processing (GANIP) approach is presented in a two parts paper dealing respectively with its theoretical and practical aspects. The Adaptive Neighborhood (AN) paradigm allows the building of new image processing transformations using context-dependent analysis. Such operators are no longer spatially invariant, but vary over the whole image with ANs as adaptive operational windows, taking intrinsically into account the local image features. This AN concept is here largely extended, using well-defined mathematical concepts, to that General Adaptive Neighborhood (GAN) in two main ways. Firstly, an analyzing criterion is added within the definition of the ANs in order to consider the radiometric, morphological or geometrical characteristics of the image, allowing a more significant spatial analysis to be addressed. Secondly, general linear image processing frameworks are introduced in the GAN approach, using concepts of abstract linear algebra, so as to develop operators that are consistent with the physical and/or physiological settings of the image to be processed. In this paper, the GANIP approach is more particularly studied in the context of Mathematical Morphology (MM). The structuring elements, required for MM, are substituted by GAN-based structuring elements, fitting to the local contextual details of the studied image. The resulting transforms perform a relevant spatially-adaptive image processing, in an intrinsic manner, that is to say without a priori knowledge needed about the image structures. Moreover, in several important and practical cases, the adaptive morphological operators are connected, which is an overwhelming advantage compared to the usual ones that fail to this property
    • 

    corecore