27 research outputs found

    Hilbert Mathematics Versus Gödel Mathematics. IV. The New Approach of Hilbert Mathematics Easily Resolving the Most Difficult Problems of Gödel Mathematics

    Get PDF
    The paper continues the consideration of Hilbert mathematics to mathematics itself as an additional “dimension” allowing for the most difficult and fundamental problems to be attacked in a new general and universal way shareable between all of them. That dimension consists in the parameter of the “distance between finiteness and infinity”, particularly able to interpret standard mathematics as a particular case, the basis of which are arithmetic, set theory and propositional logic: that is as a special “flat” case of Hilbert mathematics. The following four essential problems are considered for the idea to be elucidated: Fermat’s last theorem proved by Andrew Wiles; Poincaré’s conjecture proved by Grigori Perelman and the only resolved from the seven Millennium problems offered by the Clay Mathematics Institute (CMI); the four-color theorem proved “machine-likely” by enumerating all cases and the crucial software assistance; the Yang-Mills existence and mass gap problem also suggested by CMI and yet unresolved. They are intentionally chosen to belong to quite different mathematical areas (number theory, topology, mathematical physics) just to demonstrate the power of the approach able to unite and even unify them from the viewpoint of Hilbert mathematics. Also, specific ideas relevant to each of them are considered. Fermat’s last theorem is shown as a Gödel insoluble statement by means of Yablo’s paradox. Thus, Wiles’s proof as a corollary from the modularity theorem and thus needing both arithmetic and set theory involves necessarily an inverse Grothendieck universe. On the contrary, its proof in “Fermat arithmetic” introduced by “epoché to infinity” (following the pattern of Husserl’s original “epoché to reality”) can be suggested by Hilbert arithmetic relevant to Hilbert mathematics, the mediation of which can be removed in the final analysis as a “Wittgenstein ladder”. Poincaré’s conjecture can be reinterpreted physically by Minkowski space and thus reduced to the “nonstandard homeomorphism” of a bit of information mathematically. Perelman’s proof can be accordingly reinterpreted. However, it is valid in Gödel (or Gödelian) mathematics, but not in Hilbert mathematics in general, where the question of whether it holds remains open. The four-color theorem can be also deduced from the nonstandard homeomorphism at issue, but the available proof by enumerating a finite set of all possible cases is more general and relevant to Hilbert mathematics as well, therefore being an indirect argument in favor of the validity of Poincaré’s conjecture in Hilbert mathematics. The Yang-Mills existence and mass gap problem furthermore suggests the most general viewpoint to the relation of Hilbert and Gödel mathematics justifying the qubit Hilbert space as the dual counterpart of Hilbert arithmetic in a narrow sense, in turn being inferable from Hilbert arithmetic in a wide sense. The conjecture that many if not almost all great problems in contemporary mathematics rely on (or at least relate to) the Gödel incompleteness is suggested. It implies that Hilbert mathematics is the natural medium for their discussion or eventual solutions

    Ramified higher-order unification

    Get PDF
    While unification in the simple theory of types (a.k.a.\ higher-order logic) is undecidable, we show that unification in the pure ramified theory of types with integer levels is decidable. But the pure ramified theory of types cannot express even the simplest formulas of logic. The impure ramified type theory has an undecidable unification problem even at order 2. However, the decidability result for the pure subsystem indicates that unification should fail to terminate less often than general higher-order unification. We present applications to two expressive subsystems of second-order Peano arithmetic, \mbox{ACA}_0 and \Pi^1_{k}\mbox{-CA}_0

    Ancient Logic and its Modern Interpretations: Proceedings of the Buffalo Symposium on Modernist Interpretations of Ancient Logic, 21 and 22 April, 1972

    Get PDF
    Articles by Ian Mueller, Ronald Zirin, Norman Kretzmann, John Corcoran, John Mulhern, Mary Mulhern,Josiah Gould, and others. Topics: Aristotle's Syllogistic, Stoic Logic, Modern Research in Ancient Logic

    Proceedings of the Workshop on Knowledge Representation and Configuration, WRKP\u2796

    Get PDF

    Proceedings of the Workshop on the lambda-Prolog Programming Language

    Get PDF
    The expressiveness of logic programs can be greatly increased over first-order Horn clauses through a stronger emphasis on logical connectives and by admitting various forms of higher-order quantification. The logic of hereditary Harrop formulas and the notion of uniform proof have been developed to provide a foundation for more expressive logic programming languages. The λ-Prolog language is actively being developed on top of these foundational considerations. The rich logical foundations of λ-Prolog provides it with declarative approaches to modular programming, hypothetical reasoning, higher-order programming, polymorphic typing, and meta-programming. These aspects of λ-Prolog have made it valuable as a higher-level language for the specification and implementation of programs in numerous areas, including natural language, automated reasoning, program transformation, and databases

    The Poetry of Logical Ideas: Towards a Mathematical Genealogy of Media Art

    Get PDF
    In this dissertation I chart a mathematical genealogy of media art, demonstrating that mathematical thought has had a significant influence on contemporary experimental moving image production. Rather than looking for direct cause and effect relationships between mathematics and the arts, I will instead examine how mathematical developments have acted as a cultural zeitgeist, an indirect, but significant, influence on the humanities and the arts. In particular, I will be narrowing the focus of this study to the influence mathematical thought has had on cinema (and by extension media art), given that mathematics lies comfortably between the humanities and sciences, and that cinema is the object par excellence of such a study, since cinema and media studies arrived at a time when the humanities and sciences were held by many to be mutually exclusive disciplines. It is also shown that many media scholars have been implicitly engaging with mathematical concepts without necessarily recognizing them as such. To demonstrate this, I examine many concepts from media studies that demonstrate or derive from mathematical concepts. For instance, Claude Shannon's mathematical model of communication is used to expand on Stuart Hall's cultural model, and the mathematical concept of the fractal is used to expand on Rosalind Krauss' argument that video is a medium that lends itself to narcissism. Given that the influence of mathematics on the humanities and the arts often occurs through a misuse or misinterpretation of mathematics, I mobilize the concept of a productive misinterpretation and argue that this type of misreading has the potential to lead to novel innovations within the humanities and the arts. In this dissertation, it is also established that there are many mathematical concepts that can be utilized by media scholars to better analyze experimental moving images. In particular, I explore the mathematical concepts of symmetry, infinity, fractals, permutations, the Axiom of Choice, and the algorithmic to moving images works by Hollis Frampton, Barbara Lattanzi, Dana Plays, T. Marie, and Isiah Medina, among others. It is my desire that this study appeal to scientists with an interest in cinema and media art, and to media theorists with an interest in experimental cinema and other contemporary moving image practices
    corecore