28,079 research outputs found

    Universal Approximation of a Class of Interval Type-2 Fuzzy Neural Networks in Nonlinear Identification

    Get PDF
    Neural networks (NNs), type-1 fuzzy logic systems (T1FLSs), and interval type-2 fuzzy logic systems (IT2FLSs) have been shown to be universal approximators, which means that they can approximate any nonlinear continuous function. Recent research shows that embedding an IT2FLS on an NN can be very effective for a wide number of nonlinear complex systems, especially when handling imperfect or incomplete information. In this paper we show, based on the Stone-Weierstrass theorem, that an interval type-2 fuzzy neural network (IT2FNN) is a universal approximator, which uses a set of rules and interval type-2 membership functions (IT2MFs) for this purpose. Simulation results of nonlinear function identification using the IT2FNN for one and three variables and for the Mackey-Glass chaotic time series prediction are presented to illustrate the concept of universal approximation

    Autoregressive time series prediction by means of fuzzy inference systems using nonparametric residual variance estimation

    Get PDF
    We propose an automatic methodology framework for short- and long-term prediction of time series by means of fuzzy inference systems. In this methodology, fuzzy techniques and statistical techniques for nonparametric residual variance estimation are combined in order to build autoregressive predictive models implemented as fuzzy inference systems. Nonparametric residual variance estimation plays a key role in driving the identification and learning procedures. Concrete criteria and procedures within the proposed methodology framework are applied to a number of time series prediction problems. The learn from examples method introduced by Wang and Mendel (W&M) is used for identification. The Levenberg–Marquardt (L–M) optimization method is then applied for tuning. The W&M method produces compact and potentially accurate inference systems when applied after a proper variable selection stage. The L–M method yields the best compromise between accuracy and interpretability of results, among a set of alternatives. Delta test based residual variance estimations are used in order to select the best subset of inputs to the fuzzy inference systems as well as the number of linguistic labels for the inputs. Experiments on a diverse set of time series prediction benchmarks are compared against least-squares support vector machines (LS-SVM), optimally pruned extreme learning machine (OP-ELM), and k-NN based autoregressors. The advantages of the proposed methodology are shown in terms of linguistic interpretability, generalization capability and computational cost. Furthermore, fuzzy models are shown to be consistently more accurate for prediction in the case of time series coming from real-world applications.Ministerio de Ciencia e Innovación TEC2008-04920Junta de Andalucía P08-TIC-03674, IAC07-I-0205:33080, IAC08-II-3347:5626

    New methods for the estimation of Takagi-Sugeno model based extended Kalman filter and its applications to optimal control for nonlinear systems

    Get PDF
    This paper describes new approaches to improve the local and global approximation (matching) and modeling capability of Takagi–Sugeno (T-S) fuzzy model. The main aim is obtaining high function approximation accuracy and fast convergence. The main problem encountered is that T-S identification method cannot be applied when the membership functions are overlapped by pairs. This restricts the application of the T-S method because this type of membership function has been widely used during the last 2 decades in the stability, controller design of fuzzy systems and is popular in industrial control applications. The approach developed here can be considered as a generalized version of T-S identification method with optimized performance in approximating nonlinear functions. We propose a noniterative method through weighting of parameters approach and an iterative algorithm by applying the extended Kalman filter, based on the same idea of parameters’ weighting. We show that the Kalman filter is an effective tool in the identification of T-S fuzzy model. A fuzzy controller based linear quadratic regulator is proposed in order to show the effectiveness of the estimation method developed here in control applications. An illustrative example of an inverted pendulum is chosen to evaluate the robustness and remarkable performance of the proposed method locally and globally in comparison with the original T-S model. Simulation results indicate the potential, simplicity, and generality of the algorithm. An illustrative example is chosen to evaluate the robustness. In this paper, we prove that these algorithms converge very fast, thereby making them very practical to use

    Development of Neurofuzzy Architectures for Electricity Price Forecasting

    Get PDF
    In 20th century, many countries have liberalized their electricity market. This power markets liberalization has directed generation companies as well as wholesale buyers to undertake a greater intense risk exposure compared to the old centralized framework. In this framework, electricity price prediction has become crucial for any market player in their decision‐making process as well as strategic planning. In this study, a prototype asymmetric‐based neuro‐fuzzy network (AGFINN) architecture has been implemented for short‐term electricity prices forecasting for ISO New England market. AGFINN framework has been designed through two different defuzzification schemes. Fuzzy clustering has been explored as an initial step for defining the fuzzy rules while an asymmetric Gaussian membership function has been utilized in the fuzzification part of the model. Results related to the minimum and maximum electricity prices for ISO New England, emphasize the superiority of the proposed model over well‐established learning‐based models
    corecore