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Neural networks (NNs), type-1 fuzzy logic systems (T1FLSs), and interval type-2 fuzzy logic systems (IT2FLSs) have been shown to
be universal approximators, whichmeans that they can approximate any nonlinear continuous function. Recent research shows that
embedding an IT2FLS on an NN can be very effective for a wide number of nonlinear complex systems, especially when handling
imperfect or incomplete information. In this paper we show, based on the Stone-Weierstrass theorem, that an interval type-2 fuzzy
neural network (IT2FNN) is a universal approximator, which uses a set of rules and interval type-2membership functions (IT2MFs)
for this purpose. Simulation results of nonlinear function identification using the IT2FNN for one and three variables and for the
Mackey-Glass chaotic time series prediction are presented to illustrate the concept of universal approximation.

1. Introduction

Several authors have contributed to universal approximation
results. An overview can be found in [1–8]; further references
to prime contributors in function approximations by neural
networks are in [4, 9–12] and type-2 fuzzy logic modeling
in [13–23]. It has been shown that a three-layer NN can
approximate any real continuous function [24].The same has
been shown for a T1FLS [1, 25] using the Stone-Weierstrass
theorem [3]. A similar analysis was made by Kosko [2, 9]
using the concept of fuzzy regions. In [3, 26] Buckley shows
that, with a Sugeno model [27], a T1FLS can be built with
the ability to approximate any nonlinear continuous function.
Also, combining the neural and fuzzy logic paradigms [28,
29], an effective tool can be created for approximating
any nonlinear function [4]. In this sense, an expert can
use a type-1 fuzzy neural network (T1FNN) [10–12, 30] or
IT2FNN systems and find interpretable solutions [15–17,
31–34]. In general, Takagi-Sugeno-Kang (TSK) T1FLSs are
able to approximate by the use of polynomial consequent
rules [7, 27]. This paper uses the Levenberg-Marquardt
backpropagation learning algorithm for adapting antecedent
and consequent parameters for an adaptive IT2FNN, since

its efficiency and soundness characteristics make them fit for
these optimizing problems. An Adaptive IT2FNN is used as a
universal approximator of any nonlinear functions. A setΨ of
IT2FNNs is universal if and only if (iff), given any processΩ,
there is a system Φ ∈ Ψ such that the difference between the
output from IT2FNN and output from Ω is less than a given
𝜀.

In this paper the main contribution is the proposed
IT2FNNs architectures, which are shown to be universal
approximators and are illustrated with several benchmark
problems to verify their applicability for real world problems.

2. Interval Type-2 Fuzzy Neural Networks

An IT2FNN [15, 31, 35] combines a TSK interval type-2
fuzzy inference system (TSKIT2FIS) [13, 14, 33, 34] with
an adaptive NN in order to take advantage of both models
best characteristics. In general, when representing IT2FNN
graphically, rectangles are used to represent adaptive nodes
and circles to represent nonadaptive nodes. Output values of
pair nodes (green color) and odd nodes (blue color) represent
uncertainty intervals (Figures 1–4). In this kind of interval
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Figure 1: IT2FNN-1 architecture.

type-2 neurofuzzy adaptive networks, nodes represent pro-
cessing units called neurons, which can be classified into crisp
and fuzzy neurons.

The IT2FNN-1 architecture has 5 layers (Figure 1) [35]
and consists of adaptive nodes with equivalent function
to lower-upper membership in fuzzification layer (layer 1).
Nonadaptive nodes in rules layer (layer 2) interconnect with
the fuzzification layer (layer 1) in order to generate TSK
IT2FIS rules antecedents. Adaptive nodes in the consequent
layer (layer 3) are connected to the input layer (layer 0)
to generate rules consequents. Nonadaptive nodes in type-
reduction layer (layer 4) evaluate left-right values with the
Karnik andMendel (KM) [13, 14] algorithm.The nonadaptive
nodes in the defuzzification layer (layer 5) average left-right
values.

The IT2FNN-3 architecture has 8 layers (Figure 2) [35]
and uses IT2FN for fuzzifying the inputs (layers 1-2). Non-
adaptive nodes in rules layer (layer 3) interconnect with
lower-upper linguistic values layer (layer 2) to generate TSK
IT2FIS rules antecedents. Adaptive nodes in layer 4 adapt left-
right firing strength, biasing rules lower-upper trigger forces
with synaptic weights between layers 3 and 4. Layer 5’s non-
adaptive nodes normalize rules lower-upper firing strength.
Nonadaptive nodes I consequent layer (layer 6) interconnect
with input layer (layer 0) to generate rules consequents.
Nonadaptive nodes in type-reduction layer (layer 7) evaluate

left-right values adding lower-upper product of lower-upper
triggering forces normalized by rules consequent left-right
values. Node in defuzzification layer is adaptive and its
output 𝑦 is defined as biased average of left-right values and
parameter 𝛾. Parameter 𝛾 (0.5 by default) adjusts uncertainty
interval defined by left-right values [𝑦𝑙, 𝑦𝑟].

Architectures IT2FNN-0 and IT2FNN-2, which will be
shown in Sections 3.2 and 3.3, respectively, as universal
approximators, are described withmore details in Section 2.1.

2.1. IT2FNN-0 Architecture. An IT2FNN-0 is a seven-layer
IT2FNN, which integrates a first order TSKIT2FIS (interval
type-2 fuzzy antecedents and real consequents) with an
adaptive NN. The IT2FNN-0 (Figure 3) layers are described
as follows.

Layer 0. Inputs

𝑜
0

𝑖
= 𝑥𝑖, 𝑖 = 1, . . . , 𝑛. (1)

Layer 1. Adaptive type-1 fuzzy neuron (T1FN)

net1
𝑘
= 𝑤
1,0

𝑘,𝑖
𝑥𝑖 + 𝑏

1

𝑘
∀𝑖 = 1, . . . , 𝑛, 𝑘 = 1, . . . , 𝜗, (2)

𝑜
1

𝑘
= 𝜇(net1

𝑘
), where the transfer function 𝜇 is a member-

ship function, net1
𝑘
is the weighted sum of inputs (𝑥𝑖) and
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Figure 2: IT2FNN-3 architecture.

the synaptic weights (𝑤1,0
𝑘,𝑖
), and 𝑏

1

𝑘
is the threshold for each

neuron.

Layer 2. Nonadaptive T1FN. This layer contains T-norm and
S-norm fuzzy nodes

𝑜
2

2𝑘−1
= 𝑜
1

2𝑘−1
⋅ 𝑜
1

2𝑘
∀𝑘 = 1, . . . , 𝜗, T-norm fuzzy node,

(3)

where 𝜗 is the number of nodes in layers 1 and 2

𝑜
2

2𝑘
= 𝑜
1

2𝑘−1
+ 𝑜
1

2𝑘
− 𝑜
2

2𝑘−1
, S-norm fuzzy node, (4)

𝜏 = ℓ𝑘,𝑖 for all 𝑘 = 1, . . . ,𝑀, and 𝑖 = 1, . . . , 𝑛, where ℓ𝑘,𝑖 is the
table of indices of the antecedents of the rules𝜋 = ∑

𝑖−1

𝑗=1
V𝑗+|𝜏|,

where 𝜋 is a vector of indices for each node of layer 2

if 𝜏 > 0

𝜇
𝑘

𝑖
= 𝑜
2

𝑖𝑙(𝜋)
, 𝜇

𝑘

𝑖
= 𝑜
2

𝑖𝑢(𝜋)
(5)

else
𝜇
𝑘,𝑖

= null, 𝜇
𝑘,𝑖

= null (6)

end,

where 𝜇
𝑘

𝑖
, 𝜇
𝑘

𝑖
are lower and upper membership function val-

ues, respectively. 𝑖𝑙(𝜋) and 𝑖𝑢(𝜋) are vectors with even and odd
indices of the nodes of layer 2.

Layer 3. Lower-upper firing strength (𝑤
𝑘
, 𝑤
𝑘
). Having non-

adaptive nodes for generating lower-upper firing strength of
TSK IT2FIS rules (7),

𝑜
3

2𝑘−1
= 𝑤
𝑘
, 𝑜

3

2𝑘
= 𝑤
𝑘
,

𝑤
𝑘
=

𝑛

∏

𝑖=1

𝜇
𝐹𝑘
𝑖

(𝑥) ,

𝑤
𝑘
=

𝑛

∏

𝑖=1

𝜇
𝐹𝑘
𝑖

(𝑥) ,

(7)

where 𝜇
𝐹𝑘
𝑖
(𝑥)

∈ [𝜇
𝐹𝑘
𝑖

(𝑥), 𝜇
𝐹𝑘
𝑖

(𝑥)] is the Gaussian interval

type-2 membership function, igaussmtype2 (𝑥, [𝜎
𝑘

𝑖
,
1
𝑚
𝑘

𝑖
,

2
𝑚
𝑘

𝑖
]), defined by

1
𝜇
𝐹𝑘
𝑖

(𝑥𝑖, [𝜎
𝑘

𝑖
,
1
𝑚
𝑘

𝑖
]) = exp[

[

−
1

2
(
𝑥𝑖 −
1
𝑚
𝑘

𝑖

𝜎
𝑘

𝑖

)

2

]

]

, (8)
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Figure 3: IT2FNN-0 architecture.

2
𝜇
𝐹𝑘
𝑖

(𝑥𝑖, [𝜎
𝑘

𝑖
,
2
𝑚
𝑘

𝑖
]) = exp[

[

−
1

2
(
𝑥𝑖 −
2
𝑚
𝑘

𝑖

𝜎
𝑘

𝑖

)

2

]

]

, (9)

𝜇
𝐹𝑘
𝑖

(𝑥) =
{

{

{

2
𝜇
𝐹𝑘
𝑖

(𝑥𝑖, [𝜎
𝑘

𝑖
,
2
𝑚
𝑘

𝑖
]) , 𝑥𝑖 ≤

1
𝑚
𝑘

𝑖
,

1
𝜇
𝐹𝑘
𝑖

(𝑥𝑖, [𝜎
𝑘

𝑖
,
1
𝑚
𝑘

𝑖
]) , 𝑥𝑖 >

2
𝑚
𝑘

𝑖
,

(10)

𝜇
𝐹𝑘
𝑖

(𝑥) =

{{{

{{{

{

1
𝜇
𝐹𝑘
𝑖

(𝑥𝑖, [𝜎
𝑘

𝑖
,
1
𝑚
𝑘

𝑖
]) , 𝑥𝑖 <

1
𝑚
𝑘

𝑖
,

1,
1
𝑚
𝑘

𝑖
≤ 𝑥𝑖 ≤

2
𝑚
𝑘

𝑖
,

2
𝜇
𝐹𝑘
𝑖

(𝑥𝑖, [𝜎
𝑘

𝑖
,
2
𝑚
𝑘

𝑖
]) , 𝑥𝑖 >

2
𝑚
𝑘

𝑖
.

(11)

Layer 4. Lower-upper firing strength rule normalization
(𝜙
𝑘
, 𝜙
𝑘

). Nodes in this layer are nonadaptive and the output
is defined as the ratio between the 𝑘th lower-upper firing
strength rule (𝑤

𝑘
, 𝑤
𝑘
) and the sum of lower-upper firing

strength of all rules (13) and (14):

𝑜
4

2𝑘−1
= 𝜙
𝑘
, 𝑜

4

2𝑘
= 𝜙
𝑘

. (12)

If we view 𝜙
𝑘
, 𝜙
𝑘

as fuzzy basis functions (FBF) (32) and (33)
and 𝑦

𝑘
(𝑥) as linear function (16), then 𝑦(𝑥) can be viewed as

a linear combination of the basis functions (20) and (21):

𝜙
𝑘
=

𝑤
𝑘

𝐷𝑙

, 𝑘 = 1, . . . ,𝑀, (13)

where𝐷𝑙 = ∑
𝑀

𝑘=1
𝑤
𝑘,

𝜙
𝑘

=
𝑤
𝑘

𝐷𝑟

, 𝑘 = 1, . . . ,𝑀, (14)

where𝐷𝑟 = ∑
𝑀

𝑘=1
𝑤
𝑘.

Layer 5. Rule consequents. Each node is adaptive and its
parameters are {𝑐

𝑘

𝑖
, 𝑐
𝑘

0
}. The node’s output corresponds to

partial output of 𝑘th rule 𝑦𝑘 (16):

𝑜
5

2𝑘=1
= 𝑦
𝑘
, 𝑜

5

2𝑘
= 𝑦
𝑘
, (15)

𝑦
𝑘
=

𝑛

∑

𝑖=1

𝑐
𝑘

𝑖
𝑥𝑖 + 𝑐
𝑘

0
; 𝑘 = 1, . . . ,𝑀. (16)
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ŷ

𝜇

𝜇

𝜇

𝜇

𝜇

𝜇

𝜇

𝜇

T T

S T

KM
T T

S T

T T

S T

T

S T

T

KM

y1l

y1r

y2l

y2r

y3l

y3r

y4l

y4r

yl

yr

1/2

1/2

1
b1

net1

1
b2

net2

1
b3

net3

1
b4

net4

1
b5

net5

1
b6

net6

1
b7

net7

1
b8

net8

w1,1

w4,1

w5,2

w8,2

w6,2

w7,2

w2,1

w3,1

𝜇(net1)

𝜇(net2)

𝜇(x)

𝜇(x)

𝜇(net3)

𝜇(net4)

𝜇(x)

𝜇(x)

𝜇(net5)

𝜇(net6)

𝜇(x)

𝜇(net7) 𝜇(x)

𝜇(x)

𝜇(net8) 𝜇(x)

f1

f1

f2

f2

f3

f3

f4

f4

Figure 4: IT2FNN-2 architecture.

Layer 6. Estimating left-right interval values [𝑦𝑙, 𝑦𝑟] (18),
nodes are nonadaptive with outputs 𝑦𝑙, 𝑦𝑟. Layer 6 output is
defined by

𝑜
6

1
= 𝑦𝑙 (𝑥) , 𝑜

6

2
= 𝑦𝑟 (𝑥) , (17)

where

𝑦𝑙 (𝑥) =

𝑀

∑

𝑘=1

𝜙
𝑘
𝑦
𝑘
,

𝑦𝑟 (𝑥) =

𝑀

∑

𝑘=1

𝜙
𝑘

𝑦
𝑘
.

(18)

Layer 7. Defuzzification. This layer’s node is adaptive, where
the output 𝑦, (20) and (21), is defined as weighted average
of left-right values and parameter 𝛾. Parameter 𝛾 (default

value 0.5) adjusts the uncertainty interval defined by left-right
values [𝑦𝑙, 𝑦𝑟]:

𝑜
7

1
= 𝑦 (𝑥) , (19)

where

𝑦 (𝑥) = 𝛾𝑦𝑙 (𝑥) + (1 − 𝛾) 𝑦𝑟 (𝑥) , (20)

𝑦 (𝑥) =

𝑀

∑

𝑘=1

[𝛾𝜙
𝑘
(𝑥) + (1 − 𝛾) 𝜙

𝑘

(𝑥)] 𝑦
𝑘
(𝑥) . (21)

2.2. IT2FNN-2 Architecture. An IT2FNN-2 [31] is a six-
layer IT2FNN, which integrates a first order TSKIT2FIS
(interval type-2 fuzzy antecedents and interval type-1
fuzzy consequents), with an adaptive NN. The IT2FNN-2
(Figure 4) layers are described in a similar way to the previous
architectures.
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3. IT2FNN as a Universal Approximator

Based on the description of the interval type-2 fuzzy neural
networks, it is possible to prove that under certain conditions,
the resulting IT2FIS has unlimited approximation power to
match any nonlinear functions on a compact set [36, 37] using
the Stone-Weierstrass theorem [5, 6, 10, 30].

3.1. Stone-Weierstrass Theorem

Theorem 1 (Stone-Weierstrass theorem). Let𝑍 be a set of real
continuous functions on a compact set𝑈. If (1) 𝑍 is an algebra,
that is, the set 𝑍 is closed under addition, multiplication, and
scalar multiplication, (2) 𝑍 separates points on 𝑈, that is, for
every x, y ∈ 𝑈, x ̸= y, there exists 𝑓 ∈ 𝑍 such that 𝑓(x) ̸= 𝑓(y),
and (3) 𝑍 vanishes at no point of𝑈, that is, for each𝑥 ∈ 𝑈 there
exists 𝑓 ∈ 𝑍 such that 𝑓(x) ̸= 0, then the uniform closure of 𝑍
consists of all real continuous functions on 𝑈; that is, (𝑍, 𝑑∞)

is dense in (𝐶[𝑈], 𝑑∞) [36–38].

Theorem 2 (universal approximation theorem). For any
given real continuous function 𝑔(𝑢) on the compact set𝑈 ⊂ 𝑅

𝑛

and arbitrary 𝜀 > 0, there exists𝑓 ∈ 𝑌 such that sup
𝑥∈𝑈

(|𝑔(𝑥)−

𝑓(𝑥)|) < 𝜀.

3.2. Applying Stone-Weierstrass Theorem to the IT2FNN-0
Architecture. In the IT2FNN-0, the domain on which we
operate is almost always compact. It is a standard result in real
analysis that every closed and bounded set inR𝑛 is compact.
Now we shall apply the Stone-Weierstrass theorem to show
the representational power of IT2FNN with simplified fuzzy
if-then rules. We now consider a subset of the IT2FNN-0
on Figure 5. The set of IT2FNN-0 with singleton fuzzifier,
product inference, center of sets type reduction, andGaussian
interval type-2 membership function consists of all FBF
expansion functions of the form (38), (40). 𝑓 : 𝑈 ⊂

𝑅
𝑛

→ 𝑅, 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ 𝑈; 𝜇
𝐹𝑘
𝑖
(𝑥)

∈ [𝜇
𝐹𝑘
𝑖

(𝑥),

𝜇
𝐹𝑘
𝑖

(𝑥)] is the Gaussian interval type-2membership function,
igaussmtype2 (𝑥, [𝜎

𝑘

𝑖
,
1
𝑚
𝑘

𝑖
,
2
𝑚
𝑘

𝑖
]), defined by (27) and (31). If

we view 𝜙
𝑘
(𝑥), 𝜙
𝑘

(𝑥) as fuzzy basis functions (32) and (33)
and 𝑦

𝑘
(𝑥) are linear functions (34), then 𝑦(𝑥) of (38) and

(40) can be viewed as a linear combination of the fuzzy basis
functions, and then the IT2FNN-0 system is equivalent to an
FBF expansion. Let 𝑌 be the set of all the FBF expansions
(38) and (40) with 𝜙

𝑘
(𝑥), 𝜙
𝑘

(𝑥) given by (13) and (38) and let
𝑑∞(𝑓1, 𝑓2) = sup

𝑥∈𝑈
(|𝑓1(𝑥) − 𝑓2(𝑥)|) be the supmetric; then,

(𝑌, 𝑑∞) is a metric space [38]. We use the following Stone-
Weierstrass theorem to prove our result.

Suppose we have two IT2FNN-0s 𝑓1, 𝑓2 ∈ 𝑌; the output
of each system can be expressed as

𝑓1 (𝑥) = 𝛼𝑦
1

𝑙
(𝑥) + (1 − 𝛼) 𝑦

1

𝑟
(𝑥) , (22)

where

𝑦
1

𝑙
(𝑥) =

𝑀

∑

𝑘=1

𝜙
𝑘

1
(𝑥) 𝑧
𝑘

1
(𝑥) =

∑
𝑀1

𝑘=1
𝑤
𝑘

1
(𝑥) 𝑧
𝑘

1
(𝑥)

𝐷
1

𝑙

,

𝑦
1

𝑟
(𝑥) =

𝑀1

∑

𝑘=1

𝜙
𝑘

1
(𝑥) 𝑧
𝑘

1
(𝑥) =

∑
𝑀1

𝑘=1
𝑤
𝑘

1
(𝑥) 𝑧
𝑘

1
(𝑥)

𝐷1
𝑟

,

(23)

where

𝐷
1

𝑙
=

𝑀1

∑

𝑘=1

𝑛

∏

𝑖=1

𝜇
1𝐹𝑘
𝑖

(𝑥) , 𝐷
1

𝑟
=

𝑀1

∑

𝑘1=1

𝑛

∏

𝑖=1

𝜇 1𝐹𝑘
𝑖

(𝑥) ,

𝑤
𝑘

1
=

𝑛

∏

𝑖=1

𝜇
1𝐹𝑘
𝑖

(𝑥) , 𝑤
𝑘

1
=

𝑛

∏

𝑖=1

𝜇 1𝐹𝑘
𝑖

(𝑥) ,

𝜙
𝑘

1
(𝑥) =

𝑤
𝑘

1
(𝑥)

𝐷
1

𝑙

,

𝜙
𝑘

1
(𝑥) =

𝑤
𝑘

1

𝐷1
𝑟

,

𝑧
𝑘

1
(𝑥) =

𝑛

∑

𝑖=1

1
𝑐
𝑘

𝑖
𝑥𝑖 +
1
𝑐
𝑘

0
, 𝑘 = 1, . . . ,𝑀,

(24)

𝑓2 (𝑥) = 𝛾𝑦
2

𝑙
(𝑥) + (1 − 𝛾) 𝑦

2

𝑟
(𝑥) , (25)

where

𝑦
2

𝑙
(𝑥) =

𝑀

∑

𝑘=1

𝜙
𝑘

2
(𝑥) 𝑧
𝑘

2
(𝑥) =

∑
𝑀2

𝑘=1
𝑤
𝑘

2
(𝑥) 𝑧
𝑘

2
(𝑥)

𝐷
2

𝑙

, (26)

𝑦
2

𝑟
(𝑥) =

𝑀2

∑

𝑘=1

𝜙
𝑘

2
(𝑥) 𝑧
𝑘

2
(𝑥) =

∑
𝑀1

𝑘=1
𝑤
𝑘

2
(𝑥) 𝑧
𝑘

2
(𝑥)

𝐷2
𝑟

, (27)

where

𝑤
𝑘

2
=

𝑛

∏

𝑖=1

𝜇
2𝐹𝑘
𝑖

(𝑥) , 𝑤
𝑘

2
=

𝑛

∏

𝑖=1

𝜇 2𝐹𝑘
𝑖

(𝑥) ,

𝐷
2

𝑙
=

𝑀2

∑

𝑘=1

𝑛

∏

𝑖=1

𝜇
2𝐹𝑘
𝑖

(𝑥) , 𝐷
2

𝑟
=

𝑀2

∑

𝑘=1

𝑛

∏

𝑖=1

𝜇 2𝐹𝑘
𝑖

(𝑥) ,

𝜙
𝑘

2
(𝑥) =

𝑤
𝑘

2
(𝑥)

𝐷
2

𝑙

, 𝜙
𝑘

2
(𝑥) =

𝑤
𝑘

2
(𝑥)

𝐷2
𝑟

,

𝑧
𝑘

2
(𝑥) =

𝑛

∑

𝑖=1

2
𝑐
𝑘

𝑖
𝑥𝑖 +
2
𝑐
𝑘

0
, 𝑘 = 1, . . . ,𝑀.

(28)

Lemma 3. 𝑌 is closed under addition.

Proof. The proof of this lemma requires our IT2FNN-0 to
be able to approximate sums of functions. Suppose we have
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Figure 5: An example of the IT2FNN-0 architecture.

two IT2FNN-0s, 𝑓1(𝑥) and 𝑓2(𝑥) with 𝑀1 and 𝑀2 rules,
respectively. The output of each system can be expressed as

𝑓1 (𝑥) + 𝑓2 (𝑥)

=

∑
𝑀1

𝑘1=1
∑
𝑀2

𝑘2=1
[𝑤
𝑘1

1
𝑤
𝑘2

2
(𝛼𝑧
𝑘1

1
+ 𝛾𝑧
𝑘2

2
)]

𝐷
1

𝑙
𝐷
2

𝑙

+

∑
𝑀1

𝑘1=1
∑
𝑀2

𝑘2=1
[𝑤
𝑘1

1
𝑤
𝑘2

2
{(1 − 𝛼) 𝑧

𝑘1

1
+ (1 − 𝛾) 𝑧

𝑘2

2
}]

𝐷1
𝑟
𝐷2
𝑟

(29)

and that Φ
𝑘1 ,𝑘2

= (𝑤
𝑘1

1
𝑤
𝑘2

2
)/(𝐷
1

𝑟
𝐷
2

𝑟
) and Φ𝑘1 ,𝑘2

= (𝑤
𝑘1

1
𝑤
𝑘2

2
)/

(𝐷
1

𝑟
𝐷
2

𝑟
), where the FBFs are known to be nonlinear. There-

fore, an equivalent to IT2FNN-0 can be constructed under
the addition of 𝑓1(𝑥) and 𝑓2(𝑥), where the consequents form
an addition of 𝛼𝑧𝑘1

1
+𝛾𝑧
𝑘2

2
and (1−𝛼)𝑧

𝑘1

1
+(1−𝛾)𝑧

𝑘2

2
multiplied

by a respective FBFs expansion (Theorem 1), and there exists
𝑓 ∈ 𝑌 such that sup

𝑥∈𝑈
(|𝑔(𝑥) − 𝑓(𝑥)|) < 𝜀 (Theorem 2).

Since 𝑓(𝑥) satisfies Lemma 3 and 𝑌 ∈ 𝑓(𝑥) = 𝑓1(𝑥) + 𝑓2(𝑥)

then we can conclude that 𝑌 is closed under addition. Note
that 𝑧𝑘1

1
and 𝑧

𝑘2

2
can be linear since the FBFs are a nonlinear

basis interval and therefore the resultant function, 𝑓(𝑥), is
nonlinear interval (see Figure 5).

Lemma 4. 𝑌 is closed under multiplication.

Proof. Similar to Lemma 3, we model the product of
𝑓1(𝑥)𝑓2(𝑥) of two IT2FNN-0s. The product 𝑓1(𝑥)𝑓2(𝑥) can
be expressed as

𝑓1 (𝑥) 𝑓2 (𝑥)

=
1

𝐷
1

𝑙
𝐷
2

𝑙

[

[

𝑀1

∑

𝑘1=1

𝑀2

∑

𝑘2=1

𝑤
𝑘1

1
𝑤
𝑘2

2
𝛼𝛾𝑧
𝑘1

1
𝑧
𝑘2

2
]

]

+
1

𝐷
1

𝑙
𝐷2
𝑟

[

[

𝑀1

∑

𝑘1=1

𝑀2

∑

𝑘2=1

𝑤
𝑘1

1
𝑤
𝑘2

2
𝛼 (1 − 𝛾) 𝑧

𝑘1

1
𝑧
𝑘2

2
]

]

+
1

𝐷1
𝑟
𝐷
2

𝑙

[

[

𝑀1

∑

𝑘1=1

𝑀2

∑

𝑘2=1

𝑤
𝑘1

1
𝑤
𝑘2

2
(1 − 𝛼) 𝛾𝑧

𝑘1

1
𝑧
𝑘2

2
]

]

+
1

𝐷1
𝑟
𝐷2
𝑟

[

[

𝑀1

∑

𝑘1=1

𝑀2

∑

𝑘2=1

𝑤
𝑘1

1
𝑤
𝑘2

2
(1 − 𝛼) (1 − 𝛾) 𝑧

𝑘1

1
𝑧
𝑘2

2
]

]

.

(30)
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Therefore, an equivalent to IT2FNN-0 can be constructed
under the multiplication of 𝑓1(𝑥) and 𝑓2(𝑥), where the
consequents form an addition of 𝛼𝛾𝑧𝑘1

1
𝑧
𝑘2

2
, 𝛼(1−𝛾)𝑧

𝑘1

1
𝑧
𝑘2

2
, (1−

𝛼)𝛾𝑧
𝑘1

1
𝑧
𝑘2

2
, and (1 − 𝛼)(1 − 𝛾)𝑧

𝑘1

1
𝑧
𝑘2

2
multiplied by a respective

FBFs (Φ𝑙,𝑙
𝑘1,𝑘2

= (𝑤
𝑘1

1
𝑤
𝑘2

2
)/(𝐷
1

𝑙
𝐷
2

𝑙
),Φ𝑙,𝑟
𝑘1,𝑘2

= (𝑤
𝑘1

1
𝑤
𝑘2

2
)/(𝐷
1

𝑙
𝐷
2

𝑟
),

Φ
𝑟,𝑙

𝑘1,𝑘2
= (𝑤
𝑘1

1
𝑤
𝑘2

2
)/(𝐷
1

𝑟
𝐷
2

𝑙
), and Φ

𝑟,𝑟

𝑘1,𝑘2
= (𝑤
𝑘1

1
𝑤
𝑘2

2
)/(𝐷
1

𝑟
𝐷
2

𝑟
))

expansion (Theorem 1), and there exists 𝑓 ∈ 𝑌 such that
sup
𝑥∈𝑈

(|𝑔(𝑥) − 𝑓(𝑥)|) < 𝜀 (Theorem 2). Since 𝑓(𝑥) satisfies
Lemma 3 and 𝑌 ∈ 𝑓(𝑥) = 𝑓1(𝑥)𝑓2(𝑥) then we can conclude
that 𝑌 is closed under multiplication. Note that 𝑧𝑘1

1
and 𝑧

𝑘2

2

can be linear since the FBFs are a nonlinear basis interval and
therefore the resultant function, 𝑓(𝑥), is nonlinear interval.
Also, even if 𝑧𝑘1

1
and 𝑧

𝑘2

2
were linear, their product 𝑧𝑘1

1
𝑧
𝑘2

2
is

evidently polynomial (see Figure 5).

Lemma 5. 𝑌 is closed under scalar multiplication.

Proof. Let an arbitrary IT2FNN-0 be 𝑓(𝑥) (20); the scalar
multiplication of 𝑐𝑓(𝑥) can be expressed as

𝑐𝑓 (𝑥) = 𝛼𝑐𝑦𝑙 (𝑥) + (1 − 𝛼) 𝑐𝑦𝑟 (𝑥)

=

∑
𝑀

𝑘=1
[𝛼𝐷𝑟𝑤

𝑘
(𝑥) + (1 − 𝛼)𝐷𝑙𝑤

𝑘
(𝑥)] 𝑐𝑧

𝑘
(𝑥)

𝐷𝑙𝐷𝑟

.

(31)

Therefore we can construct an IT2FNN-0 that computes
𝑐𝑧
𝑘
(𝑥) in the form of the proposed IT2FNN-0; 𝑌 is closed

under scalar multiplication.

Lemma 6. For every x0, y0 ∈ 𝑈 and x0 ̸= y0, there exists𝑓 ∈ 𝑌

such that 𝑓(x0) ̸= 𝑓(y0); that is, 𝑌 separates points on 𝑈.

Proof. Weprove that (𝑌, 𝑑∞) separates points on𝑈. We prove
this by constructing a required 𝑓(𝑥) (20); that is, we specify
𝑓 ∈ 𝑌 such that 𝑓(x0) ̸= 𝑓(y0) for arbitrarily given (x0, y0) ∈

𝑈 with x0 ̸= y0. We choose two fuzzy rules in the form of (8)
for the fuzzy rule base (i.e., 𝑀 = 2). Let 𝑥0 = (𝑥

0

1
, 𝑥
0

2
, . . . , 𝑥

0

𝑛
)

and 𝑦
0
= (𝑦
0

1
, 𝑦
0

2
, . . . , 𝑦

0

𝑛
). If 𝑥0
𝑖
= (𝑥
0

𝑙𝑖
+ 𝑥
0

𝑟𝑖
)/2 and 𝑦

0

𝑖
= (𝑦
0

𝑙𝑖
+

𝑦
0

𝑟𝑖
)/2 with 𝑥

0

𝑖
̸= 𝑦
0

𝑖
, we define two interval type-2 fuzzy sets

(𝐹
1

𝑖
, [𝜇
𝐹1
𝑖

, 𝜇
𝐹1
𝑖

]) and (𝐹
2

𝑖
, [𝜇
𝐹2
𝑖

, 𝜇
𝐹2
𝑖

]) with

𝜇
𝐹1
𝑖

(𝑥𝑖) =

{{{{

{{{{

{

exp [−
1

2
(𝑥𝑖 − 𝑥

0

𝑙𝑖
)
2

] , 𝑥𝑖 < 𝑥
0

𝑙𝑖
,

1, 𝑥
0

𝑙𝑖
≤ 𝑥𝑖 ≤ 𝑥

0

𝑟𝑖
,

exp [−
1

2
(𝑥𝑖 − 𝑥

0

𝑟𝑖
)
2

] , 𝑥𝑖 > 𝑥
0

𝑙𝑖
,

(32)

𝜇
𝐹1
𝑖

(𝑥𝑖) =

{{

{{

{

exp [−
1

2
(𝑥𝑖 − 𝑥

0

𝑟𝑖
)
2

] , 𝑥𝑖 ≤ 𝑥
0

𝑙𝑖
,

exp [−
1

2
(𝑥𝑖 − 𝑥

0

𝑙𝑖
)
2

] , 𝑥𝑖 > 𝑥
0

𝑟𝑖
,

(33)

𝜇
𝐹2
𝑖

(𝑥𝑖) =

{{{{

{{{{

{

exp [−
1

2
(𝑥𝑖 − 𝑦

0

𝑙𝑖
)
2

] , 𝑥𝑖 < 𝑦
0

𝑙𝑖
,

1, 𝑦
0

𝑙𝑖
≤ 𝑥𝑖 ≤ 𝑦

0

𝑟𝑖
,

exp [−
1

2
(𝑥𝑖 − 𝑦

0

𝑟𝑖
)
2

] , 𝑥𝑖 > 𝑦
0

𝑙𝑖
,

(34)

𝜇
𝐹𝑘
𝑖

(𝑥𝑖) =

{{

{{

{

exp [−
1

2
(𝑥𝑖 − 𝑦

0

𝑟𝑖
)
2

] , 𝑥𝑖 ≤ 𝑦
0

𝑙𝑖
,

exp [−
1

2
(𝑥𝑖 − 𝑦

0

𝑙𝑖
)
2

] , 𝑥𝑖 > 𝑦
0

𝑟𝑖
.

(35)

If 𝑥0
𝑖
= 𝑦
0

𝑖
, then 𝐹

1

𝑖
= 𝐹
2

𝑖
and 𝜇

𝐹1
𝑖

(𝑥
0

𝑖
) = 𝜇

𝐹2
𝑖

(𝑦
0

𝑖
), 𝜇
𝐹1
𝑖

(𝑥
0

𝑖
) =

𝜇
𝐹2
𝑖

(𝑦
0

𝑖
); that is, only one interval type-2 fuzzy set is defined.

We define two real value sets 𝑧
1 and 𝑧

2 with 𝑧
𝑘
(𝑥) =

∑
𝑛

𝑖=1
𝑐
𝑘

𝑖
𝑥𝑖 + 𝑐

𝑘

0
, where 𝑘 = 1, 2. Now we have specified all the

design parameters except 𝑧𝑘; that is, we have already obtained
a function 𝑓 which is in the form of (10) with 𝑀 = 2 and
(𝐹
1

𝑖
, [𝜇
𝐹1
𝑖

, 𝜇
𝐹1
𝑖

]) given by (18), (20), and (21). With this 𝑓, we
have

𝑓 (𝑥
0
) = 𝛼 [𝜙

1
(𝑥
0
) 𝑧
1
(𝑥
0
) + 𝜙
2
(𝑥
0
) 𝑧
2
(𝑥
0
)] + (1 − 𝛼)

× [𝜙
1

(𝑥
0
) 𝑧
1
(𝑥
0
) + (1 − 𝜙

1

(𝑥
0
)) 𝑧
2
(𝑥
0
)] ,

(36)

where

𝜙
1
(𝑥
0
) =

∏
𝑛

𝑖=1
𝜇
𝐹1
𝑖

(𝑥
0

𝑖
)

∏
𝑛

𝑖=1
𝜇
𝐹1
𝑖

(𝑥
0

𝑖
) + ∏

𝑛

𝑖=1
𝜇
𝐹2
𝑖

(𝑥
0

𝑖
)
,

𝜙
2
(𝑥
0
) =

∏
𝑛

𝑖=1
𝜇
𝐹2
𝑖

(𝑥
0

𝑖
)

∏
𝑛

𝑖=1
𝜇
𝐹1
𝑖

(𝑥
0

𝑖
) + ∏

𝑛

𝑖=1
𝜇
𝐹2
𝑖

(𝑥
0

𝑖
)
,

𝜙
1

(𝑥
0
) =

1

1 + ∏
𝑛

𝑖=1
𝜇
𝐹2
𝑖

(𝑥
0

𝑖
)
,

(37)

𝑓 (𝑦
0
) = 𝛼 [𝜙

1
(𝑦
0
) 𝑧
1
(𝑦
0
) + 𝜙
2
(𝑦
0
) 𝑧
2
(𝑦
0
)] + (1 − 𝛼)

× [(1 − 𝜙
2

(𝑦
0
)) 𝑧
1
(𝑦
0
) + 𝜙
2

(𝑦
0
) 𝑧
2
(𝑦
0
)] ,

(38)

where

𝜙
1
(𝑦
0
) =

∏
𝑛

𝑖=1
𝜇
𝐹1
𝑖

(𝑦
0

𝑖
)

∏
𝑛

𝑖=1
𝜇
𝐹1
𝑖

(𝑦
0

𝑖
) + ∏

𝑛

𝑖=1
𝜇
𝐹2
𝑖

(𝑦
0

𝑖
)
,

𝜙
2
(𝑦
0
) =

∏
𝑛

𝑖=1
𝜇
𝐹2
𝑖

(𝑦
0

𝑖
)

∏
𝑛

𝑖=1
𝜇
𝐹1
𝑖

(𝑦
0

𝑖
) + ∏

𝑛

𝑖=1
𝜇
𝐹2
𝑖

(𝑦
0

𝑖
)
,

𝜙
2

(𝑦
0
) =

1

∏
𝑛

𝑖=1
𝜇
𝐹1
𝑖

(𝑦
0

𝑖
) + 1

.

(39)

Since x0 ̸= y0, there must be some 𝑖 such that 𝑥0
𝑖
= 𝑦
0

𝑖
; hence,

we have ∏
𝑛

𝑖=1
𝜇
𝐹1
𝑖

(𝑥
0

𝑖
) ̸= 1 and ∏

𝑛

𝑖=1
𝜇
𝐹2
𝑖

(𝑥
0

𝑖
) ̸= 1. If we choose
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𝑧
1
= 0 and 𝑧

2
= 1, then𝑓(𝑥

0
) = 𝛼𝜙

2
(𝑥
0
)+(1−𝛼)[1−𝜙

1

(𝑥
0
)] ̸=

𝛼𝜙
2
(𝑦
0
) + (1 − 𝛼)𝜙

2

(𝑦
0
) = 𝑓(𝑦

0
). Separability is satisfied

whenever an IT2FNN-0 can compute strictly monotonic
functions of each input variable. This can easily be achieved
by adjusting the membership functions of the premise part.
Therefore, (𝑌, 𝑑∞) separates points on 𝑈.

Lemma7. For each𝑥 ∈ 𝑈, there exists𝑓 ∈ 𝑌 such that𝑓(𝑥) ̸=

0; that is, 𝑌 vanishes at no point of 𝑈.

Finally, we prove that (𝑌, 𝑑∞) vanishes at no point of 𝑈.
By observing (8)–(11), (20), and (21), we simply choose all
𝑦
𝑘
(𝑥) > 0 (𝑘 = 1, 2, . . . ,𝑀); that is, any 𝑓 ∈ 𝑌 with 𝑦

𝑘
(𝑥) > 0

serves as the required 𝑓.

Proof of Theorem 2. From (20) and (21), it is evident that
𝑌 is a set of real continuous functions on 𝑈, which are
established by using complete interval type-2 fuzzy sets in
the IF parts of fuzzy rules. Using Lemmas 3, 4, and 5, 𝑌
is proved to be an algebra. By using the Stone-Weierstrass
theorem together with Lemmas 6 and 7, we establish that the
proposed IT2FNN-0 possesses the universal approximation
capability.

3.3. Applying the Stone-Weierstrass Theorem to the IT2FNN-2
Architecture. We now consider a subset of the IT2FNN-2 on
Figure 2. The set of IT2FNN-2 with singleton fuzzifier, prod-
uct inference, type-reduction defuzzifier (KM) [13, 14], and
Gaussian interval type-2 membership function consists of all
FBF expansion functions. 𝑓 : 𝑈 ⊂ 𝑅

𝑛
→ 𝑅, 𝑥 = (𝑥1, 𝑥2, . . . ,

𝑥𝑛) ∈ 𝑈; 𝜇
𝐹𝑘
𝑖
(𝑥)

∈ [𝜇
𝐹𝑘
𝑖

(𝑥), 𝜇
𝐹𝑘
𝑖

(𝑥)] is the Gaussian inter-

val type-2 membership function, igaussmtype2 (𝑥, [𝜎
𝑘

𝑖
,
1
𝑚
𝑘

𝑖
,

1
𝑚
𝑘

𝑖
]), defined by (8)–(11). If we view 𝜙

𝑘

𝑙
(𝑥), 𝜙

𝑘

𝑙
(𝑥), 𝜙𝑘

𝑟
(𝑥),

𝜙
𝑘

𝑟
(𝑥) as basis functions (44), (46), (49), (50) and 𝑦

𝑘

𝑙
, 𝑦
𝑘

𝑟
are

linear functions (41), then 𝑦(𝑥) can be viewed as a linear
combination of the basis functions. Let 𝑌 be the set of all
the FBF expansions with 𝜙

𝑘

𝑙
(𝑥), 𝜙

𝑘

𝑙
(𝑥), 𝜙𝑘

𝑟
(𝑥), 𝜙

𝑘

𝑟
(𝑥) and let

𝑑∞(𝑓1, 𝑓2) = sup
𝑥∈𝑈

(|𝑓1(𝑥) − 𝑓2(𝑥)|) be the supmetric; then,
(𝑌, 𝑑∞) is a metric space [38]. The following theorem shows
that (𝑌, 𝑑∞) is dense in (𝐶[𝑈], 𝑑∞), where𝐶[𝑈] is the set of all
real continuous functions defined on𝑈. We use the following
Stone-Weierstrass theorem to prove the theorem.

Suppose we have two IT2FNN-2s 𝑓1, 𝑓2 ∈ 𝑌; the output
of each system can be expressed as

𝑓1 (𝑥) = 𝛾𝑦
1

𝑙
(𝑥) + (1 − 𝛾) 𝑦

1

𝑟
(𝑥) , (40)

where

𝑦
1

𝑙
(𝑥) =

𝐿1

∑

𝑘1=1

1
𝜙
𝑘1

𝑙
(𝑥)
1
𝑧
𝑘1

𝑙
(𝑥) +

𝑀1

∑

𝑘1=𝐿1+1

1
𝜙
𝑘1

𝑙
(𝑥)
1
𝑧
𝑘1

𝑙
(𝑥)

=

∑
𝐿1

𝑘1=1
𝑤
𝑘1

1
(𝑥)
1
𝑧
𝑘1

𝑙
(𝑥) + ∑

𝑀1

𝑘=𝐿1+1
𝑤
𝑘1

1
(𝑥)
1
𝑧
𝑘1

𝑙
(𝑥)

𝐷
1

𝑙

,

𝑦
1

𝑟
(𝑥) =

𝑅1

∑

𝑘1=1

1
𝜙
𝑘1

𝑟
(𝑥)
1
𝑧
𝑘1
𝑟

(𝑥) +

𝑀1

∑

𝑘1=𝑅1+1

1
𝜙
𝑘1

𝑟
(𝑥)
1
𝑧
𝑘1
𝑟

(𝑥)

=

∑
𝑅1

𝑘1=1
𝑤
𝑘1

1
(𝑥)
1
𝑧
𝑘1
𝑟

(𝑥) + ∑
𝑀1

𝑘1=𝑅1+1
𝑤
𝑘1

1
(𝑥)
1
𝑧
𝑘1
𝑟

(𝑥)

𝐷1
𝑟

,

(41)

where

𝑤
𝑘1

1
=

𝑛

∏

𝑖=1

𝜇
1𝐹
𝑘1

𝑖

(𝑥) , 𝑤
𝑘1

1
=

𝑛

∏

𝑖=1

𝜇 1𝐹
𝑘1

𝑖

(𝑥) ,

𝐷
1

𝑙
=

𝐿1

∑

𝑘1=1

𝑤
𝑘1

1
+

𝑀1

∑

𝑘1=𝐿1+1

𝑤
𝑘1

1
,

𝐷
1

𝑟
=

𝑅1

∑

𝑘1=1

𝑤
𝑘1

1
+

𝑀1

∑

𝑘1=𝑅1+1

𝑤
𝑘1

1
,

1
𝜙
𝑘1

𝑙
(𝑥) =

𝑤
𝑘1

1

𝐷
1

𝑙

∀𝑘1 = 1, . . . , 𝐿1 (𝑥) ,

1
𝜙
𝑘1

𝑙
(𝑥) =

𝑤
𝑘1

1

𝐷
1

𝑙

∀𝑘1 = 𝐿1 (𝑥) + 1, . . . ,𝑀1,

1
𝜙
𝑘1

𝑟
(𝑥) =

𝑤
𝑘1

1

𝐷1
𝑟

∀𝑘1 = 1, . . . , 𝑅1 (𝑥) ,

1
𝜙
𝑘1

𝑟
(𝑥) =

𝑤
𝑘1

1

𝐷1
𝑟

∀𝑘1 = 𝑅1 (𝑥) + 1, . . . ,𝑀1,

1
𝑧
𝑘1

𝑙
=

𝑛

∑

𝑖=1

1
𝑐
𝑘1

𝑖
𝑥𝑖 +
1
𝑐
𝑘

0
−

𝑛

∑

𝑖=1

1
𝑠
𝑘1

𝑖

󵄨󵄨󵄨󵄨𝑥𝑖
󵄨󵄨󵄨󵄨 −
1
𝑠
𝑘1

0
,

𝑘1 = 1, . . . ,𝑀1,

1
𝑧
𝑘1
𝑟

=

𝑛

∑

𝑖=1

1
𝑐
𝑘1

𝑖
𝑥𝑖 +
1
𝑐
𝑘1

0
+

𝑛

∑

𝑖=1

1
𝑠
𝑘1

𝑖

󵄨󵄨󵄨󵄨𝑥𝑖
󵄨󵄨󵄨󵄨 +
1
𝑠
𝑘1

0
,

𝑘1 = 1, . . . ,𝑀1,

𝑓2 (𝑥) = 𝛾𝑦
2

𝑙
(𝑥) + (1 − 𝛾) 𝑦

2

𝑟
(𝑥) ,

(42)

where

𝑦
2

𝑙
(𝑥)

=

𝐿2

∑

𝑘2=1

2
𝜙
𝑘2

𝑙
(𝑥)
2
𝑧
𝑘2

𝑙
(𝑥) +

𝑀2

∑

𝑘2=𝐿2+1

2
𝜙
𝑘2

𝑙
(𝑥)
2
𝑧
𝑘2

𝑙
(𝑥)

=

∑
𝐿2

𝑘2=1
𝑤
𝑘2

2
(𝑥)
2
𝑧
𝑘2

𝑙
(𝑥) + ∑

𝑀2

𝑘2=𝐿2+1
𝑤
𝑘2

2
(𝑥)
2
𝑧
𝑘2

𝑙
(𝑥)

𝐷
2

𝑙

,

(43)
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𝑦
2

𝑟
(𝑥)

=

𝑅2

∑

𝑘2=1

2
𝜙
𝑘2

𝑟
(𝑥)
2
𝑧
𝑘2
𝑟

(𝑥) +

𝑀2

∑

𝑘2=𝑅2+1

2
𝜙
𝑘2

𝑟
(𝑥)
2
𝑧
𝑘2
𝑟

(𝑥)

=

∑
𝑅21

𝑘2=1
𝑤
𝑘2

2
(𝑥)
2
𝑧
𝑘2
𝑟

(𝑥) + ∑
𝑀2

𝑘2=𝑅2+1
𝑤
𝑘2

2
(𝑥)
2
𝑧
𝑘2
𝑟

(𝑥)

𝐷1
𝑟

,

(44)

where

𝑤
𝑘2

2
=

𝑛

∏

𝑖=1

𝜇
2𝐹
𝑘2

𝑖

(𝑥) , 𝑤
𝑘2

2
=

𝑛

∏

𝑖=1

𝜇
2𝐹
𝑘2

𝑖

(𝑥) ,

𝐷
2

𝑙
=

𝐿2

∑

𝑘2=1

𝑤
𝑘2

2
+

𝑀2

∑

𝑘2=𝐿2+1

𝑤
𝑘2

2
,

𝐷
2

𝑟
=

𝑅2

∑

𝑘2=1

𝑤
𝑘2

2
+

𝑀2

∑

𝑘2=𝑅2+1

𝑤
𝑘2

2
,

2
𝜙
𝑘2

𝑙
(𝑥) =

𝑤
𝑘2

2

𝐷
2

𝑙

∀𝑘2 = 1, . . . , 𝐿2 (𝑥) ,

2
𝜙
𝑘2

𝑙
(𝑥) =

𝑤
𝑘2

2

𝐷
2

𝑙

∀𝑘2 = 𝐿2 (𝑥) + 1, . . . ,𝑀2,

2
𝜙
𝑘2

𝑟
(𝑥) =

𝑤
𝑘2

2

𝐷2
𝑟

∀𝑘2 = 1, . . . , 𝑅2 (𝑥) ,

2
𝜙
𝑘2

𝑟
(𝑥) =

𝑤
𝑘2

2

𝐷2
𝑟

∀𝑘2 = 𝑅2 (𝑥) + 1, . . . ,𝑀2,

2
𝑧
𝑘2

𝑙
=

𝑛

∑

𝑖=1

2
𝑐
𝑘2

𝑖
𝑥𝑖 +
2
𝑐
𝑘2

0
−

𝑛

∑

𝑖=1

2
𝑠
𝑘2

𝑖

󵄨󵄨󵄨󵄨𝑥𝑖
󵄨󵄨󵄨󵄨 −
2
𝑠
𝑘2

0
,

𝑘2 = 1, . . . ,𝑀2,

2
𝑧
𝑘2
𝑟

=

𝑛

∑

𝑖=1

2
𝑐
𝑘2

𝑖
𝑥𝑖 +
2
𝑐
𝑘2

0
+

𝑛

∑

𝑖=1

2
𝑠
𝑘2

𝑖

󵄨󵄨󵄨󵄨𝑥𝑖
󵄨󵄨󵄨󵄨 +
2
𝑠
𝑘2

0
,

𝑘2 = 1, . . . ,𝑀2.

(45)

Lemma 8. 𝑌 is closed under addition.

Proof. The proof of this lemma requires our IT2FNN-2 to
be able to approximate sums of functions. Suppose we have
two IT2FNN-2s 𝑓1(𝑥) and 𝑓2(𝑥) with rules 𝑀1 and 𝑀2,
respectively. The output of each system can be expressed as

𝑓1 (𝑥) + 𝑓2 (𝑥)

= ((

𝐿1

∑

𝑘1=1

𝐿2

∑

𝑘2=1

[𝛼𝐷
2

𝑙
𝑤
𝑘1

1

1
𝑧
𝑘1

𝑙
(𝑥) + 𝛾𝐷

1

𝑙
𝑤
𝑘2

2

2
𝑧
𝑘2

𝑙
(𝑥)])

× (𝐷
1

𝑙
𝐷
2

𝑙
)
−1

)

+ ((

𝑀1

∑

𝑘1=𝐿1+1

𝑀2

∑

𝑘2=𝐿2+1

[𝛼𝐷
2

𝑙
𝑤
𝑘1

1

1
𝑧
𝑘1

𝑙
(𝑥)+𝛾𝐷

1

𝑙
𝑤
𝑘2

2

2
𝑧
𝑘2

𝑙
(𝑥)])

× (𝐷
1

𝑙
𝐷
2

𝑙
)
−1

)

+ ((

𝑅1

∑

𝑘1=1

𝑅2

∑

𝑘2=1

[(1−𝛼)𝐷
2

𝑟
𝑤
𝑘1

1

1
𝑧
𝑘1
𝑟

(𝑥)

+(1−𝛾)𝐷
1

𝑟
𝑤
𝑘2

2

2
𝑧
𝑘2
𝑟

(𝑥)])× (𝐷
1

𝑟
𝐷
2

𝑟
)
−1

)

+ ((

𝑀1

∑

𝑘1=𝑅1+1

𝑀2

∑

𝑘2=𝑅2+1

[(1−𝛼)𝐷
2

𝑟
𝑤
𝑘1

1

1
𝑧
𝑘1
𝑟

(𝑥)

+(1−𝛾)𝐷
1

𝑟
𝑤
𝑘2

2

2
𝑧
𝑘2
𝑟

(𝑥)])

× (𝐷
1

𝑟
𝐷
2

𝑟
)
−1

).

(46)
Therefore, an equivalent to IT2FNN-2 can be constructed
under the addition of𝑓1(𝑥) and𝑓2(𝑥), where the consequents
form an addition of 𝛼 1𝑧𝑘1

𝑙
+𝛾
2
𝑧
𝑘2

𝑙
and (1−𝛼)

1
𝑧
𝑘1
𝑟
+(1−𝛾)

2
𝑧
𝑘2
𝑟

multiplied by a respective FBFs expansion (Theorem 1), and
there exists 𝑓 ∈ 𝑌 such that sup

𝑥∈𝑈
(|𝑔(𝑥) − 𝑓(𝑥)|) < 𝜀

(Theorem 2). Since 𝑓(𝑥) satisfies Lemma 3 and 𝑌 ∈ 𝑓(𝑥) =

𝑓1(𝑥) + 𝑓2(𝑥) then we can conclude that 𝑌 is closed under
addition. Note that 𝑧𝑘1

1
and 𝑧

𝑘2

2
can be linear interval since

the FBFs are a nonlinear basis and therefore the resultant
function, 𝑓(𝑥), is nonlinear interval (see Figure 6).

Lemma 9. 𝑌 is closed under multiplication.

Proof. In a similar way to Lemma 8, we model the product
of 𝑓1(𝑥)𝑓2(𝑥) of two IT2FNN-2s which is the last point we
need to demonstrate before we can conclude that the Stone-
Weierstrass theoremcan be applied to the proposed reasoning
mechanism. The product 𝑓1(𝑥)𝑓2(𝑥) can be expressed as
𝑓1 (𝑥) 𝑓2 (𝑥)

=
𝛼𝛾

𝐷
1

𝑙
𝐷
2

𝑙

× [

[

𝐿1

∑

𝑘1=1

𝐿2

∑

𝑘2=1

𝑤
𝑘1

1
(𝑥)𝑤
𝑘2

2
(𝑥)
1
𝑧
𝑘1

𝑙
(𝑥)
2
𝑧
𝑘2

𝑙
(𝑥)

+

𝐿1

∑

𝑘1=1

𝑀2

∑

𝑘2=𝐿2+1

𝑤
𝑘1

1
(𝑥)𝑤
𝑘2

2
(𝑥)
1
𝑧
𝑘1

𝑙
(𝑥)
2
𝑧
𝑘2

𝑙
(𝑥)

+

𝑀1

∑

𝑘1=𝐿1+1

𝐿2

∑

𝑘2=1

𝑤
𝑘1

1
(𝑥)𝑤
𝑘2

2
(𝑥)
1
𝑧
𝑘1

𝑙
(𝑥)
2
𝑧
𝑘2

𝑙
(𝑥)
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Figure 6: An example of the IT2FNN-2 architecture.

+

𝑀1

∑

𝑘1=𝐿1+1

𝑀2

∑

𝑘2=𝐿2+1

𝑤
𝑘1

1
(𝑥)𝑤
𝑘2

2
(𝑥)
1
𝑧
𝑘1

𝑙
(𝑥)
2
𝑧
𝑘2

𝑙
(𝑥)]

]

+
𝛼 (1 − 𝛾)

𝐷
1

𝑙
𝐷2
𝑟

× [

[

𝐿1

∑

𝑘1=1

𝑅2

∑

𝑘2=1

𝑤
𝑘1

1
(𝑥) 𝑤
𝑘2

2
(𝑥)
1
𝑧
𝑘1

𝑙
(𝑥)
2
𝑧
𝑘2
𝑟

(𝑥)

+

𝐿1

∑

𝑘1=1

𝑀2

∑

𝑘2=𝑅2+1

𝑤
𝑘1

1
(𝑥)𝑤
𝑘2

2
(𝑥)
1
𝑧
𝑘1

𝑙
(𝑥)
2
𝑧
𝑘2
𝑟

(𝑥)

+

𝑀1

∑

𝑘1=𝐿1+1

𝑅2

∑

𝑘2=1

𝑤
𝑘1

1
(𝑥) 𝑤
𝑘2

2
(𝑥)
1
𝑧
𝑘1

𝑙
(𝑥)
2
𝑧
𝑘2
𝑟

(𝑥)

+

𝑀1

∑

𝑘1=𝐿1+1

𝑀2

∑

𝑘2=𝑅2+1

𝑤
𝑘1

1
(𝑥) 𝑤
𝑘2

2
(𝑥)
1
𝑧
𝑘1

𝑙
(𝑥)
2
𝑧
𝑘2
𝑟

(𝑥)]

]

+
(1 − 𝛼) 𝛾

𝐷1
𝑟
𝐷
2

𝑙

× [

[

𝑅1

∑

𝑘1=1

𝐿2

∑

𝑘2=1

𝑤
𝑘1

1
(𝑥)𝑤
𝑘2

2
(𝑥)
1
𝑧
𝑘1
𝑟

(𝑥)
2
𝑧
𝑘2

𝑙
(𝑥)

+

𝑅1

∑

𝑘1=1

𝑀2

∑

𝑘2=𝐿2+1

𝑤
𝑘1

1
(𝑥)𝑤
𝑘2

2
(𝑥)
1
𝑧
𝑘1
𝑟

(𝑥)
2
𝑧
𝑘2

𝑙
(𝑥)

+

𝑀1

∑

𝑘1=𝑅1+1

𝐿2

∑

𝑘2=1

𝑤
𝑘1

1
(𝑥) 𝑤
𝑘2

2
(𝑥)
1
𝑧
𝑘1
𝑟

(𝑥)
2
𝑧
𝑘2

𝑙
(𝑥)

+

𝑀1

∑

𝑘1=𝑅1+1

𝑀2

∑

𝑘2=𝑅2+1

𝑤
𝑘1

1
(𝑥)𝑤
𝑘2

2
(𝑥)
1
𝑧
𝑘1
𝑟

(𝑥)
2
𝑧
𝑘2

𝑙
(𝑥)]

]

+
(1 − 𝛼) (1 − 𝛾)

𝐷1
𝑟
𝐷2
𝑟

× [

[

𝑅1

∑

𝑘1=1

𝑅2

∑

𝑘2=1

𝑤
𝑘1

1
(𝑥)𝑤
𝑘2

2
(𝑥)
1
𝑧
𝑘1
𝑟

(𝑥)
2
𝑧
𝑘2
𝑟

(𝑥)

+

𝑅1

∑

𝑘1=1

𝑀2

∑

𝑘2=𝑅2+1

𝑤
𝑘1

1
(𝑥) 𝑤
𝑘2

2
(𝑥)
1
𝑧
𝑘1
𝑟

(𝑥)
2
𝑧
𝑘2
𝑟

(𝑥)
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+

𝑀1

∑

𝑘1=𝑅1+1

𝑅2

∑

𝑘2=1

𝑤
𝑘1

1
(𝑥)𝑤
𝑘2

2
(𝑥)
1
𝑧
𝑘1
𝑟

(𝑥)
2
𝑧
𝑘2
𝑟

(𝑥)

+

𝑀1

∑

𝑘1=𝑅1+1

𝑀2

∑

𝑘2=𝑅2+1

𝑤
𝑘1

1
(𝑥)𝑤
𝑘2

2
(𝑥)
1
𝑧
𝑘1
𝑟

(𝑥)
2
𝑧
𝑘2
𝑟

(𝑥)]

]

.

(47)

Therefore, an equivalent to IT2FNN-2 can be constructed
under the multiplication of 𝑓1(𝑥) and 𝑓2(𝑥), where the con-
sequents form an addition of 𝛼𝛾 1𝑧𝑘1

𝑙

2
𝑧
𝑘2

𝑙
, 𝛼(1 − 𝛾)

1
𝑧
𝑘1

𝑙

2
𝑧
𝑘2
𝑟
,

(1 − 𝛼)𝛾
1
𝑧
𝑘1
𝑟

2
𝑧
𝑘2

𝑙
, and (1 − 𝛼)(1 − 𝛾)

1
𝑧
𝑘1
𝑟

2
𝑧
𝑘2
𝑟

multiplied by
a respective FBFs expansion (Theorem 1), and there exists
𝑓 ∈ 𝑌 such that sup

𝑥∈𝑈
(|𝑔(𝑥)−𝑓(𝑥)|) < 𝜀 (Theorem 2). Since

𝑓(𝑥) satisfies Lemma 3 and 𝑌 ∈ 𝑓(𝑥) = 𝑓1(𝑥)𝑓2(𝑥) then
we can conclude that 𝑌 is closed under multiplication. Note
that 𝑧𝑘1

1
and 𝑧

𝑘2

2
can be linear intervals since the FBFs are a

nonlinear basis interval and therefore the resultant function,
𝑓(𝑥), is nonlinear interval. Also, even if 𝑧

𝑘1

1
and 𝑧

𝑘2

2
were

linear, their product 𝑧𝑘1
1
𝑧
𝑘2

2
is evidently polynomial interval

(see Figure 10).

Lemma 10. 𝑌 is closed under scalar multiplication.

Proof. Let an arbitrary IT2FNN-2 be 𝑓(𝑥) (51); the scalar
multiplication of 𝑐𝑓(𝑥) can be expressed as

𝑐𝑓1 (𝑥)

= 𝛼𝑐𝑦
1

𝑙
(𝑥) + (1 − 𝛼) 𝑐𝑦

1

𝑟
(𝑥)

=

∑
𝐿1

𝑘1=1
𝑤
𝑘1

1
(𝑥) 𝛼𝑐

1
𝑧
𝑘1

𝑙
(𝑥) + ∑

𝑀1

𝑘=𝐿1+1
𝑤
𝑘1

1
(𝑥) 𝛼𝑐

1
𝑧
𝑘1

𝑙
(𝑥)

𝐷
1

𝑙

+

∑
𝑅1

𝑘1=1
𝑤
𝑘1

1
(𝑥) (1 − 𝛼) 𝑐

1
𝑧
𝑘1
𝑟

(𝑥)

𝐷1
𝑟

+

∑
𝑀1

𝑘1=𝑅1+1
𝑤
𝑘1

1
(𝑥) (1 − 𝛼) 𝑐

1
𝑧
𝑘1
𝑟

(𝑥)

𝐷1
𝑟

.

(48)

Therefore we can construct an IT2FNN-2 that computes
all FBF expansion combinations with 𝛼𝑐

1
𝑧
𝑘1

𝑙
(𝑥) and (1 −

𝛼)𝑐
1
𝑧
𝑘1
𝑟
(𝑥) in the form of the proposed IT2FNN-2, and 𝑌 is

closed under scalar multiplication.

Lemma 11. For every (x0, y0) ∈ 𝑈 and x0 ̸= y0, there exists𝑓 ∈

𝑌 such that 𝑓(x0) ̸= 𝑓(y0); that is, 𝑌 separates points on 𝑈.

We prove this by constructing a required 𝑓; that is, we
specify 𝑓 ∈ 𝑌 such that 𝑓(x0) ̸= 𝑓(y0) for arbitrarily given
x0, y0 ∈ 𝑈 with x0 ̸= y0. We choose two fuzzy rules in the
form of (8) for the fuzzy rule base (i.e., 𝑀 = 2). Let 𝑥0 =

(𝑥
0

1
, 𝑥
0

2
, . . . , 𝑥

0

𝑛
) and 𝑦

0
= (𝑦
0

1
, 𝑦
0

2
, . . . , 𝑦

0

𝑛
). If 𝑥0
𝑖
= (𝑥
0

𝑙𝑖
+ 𝑥
0

𝑟𝑖
)/2

and 𝑦
0

𝑖
= (𝑦
0

𝑙𝑖
+ 𝑦
0

𝑟𝑖
)/2 with 𝑥

0

𝑖
̸= 𝑦
0

𝑖
, we define two interval

type-2 fuzzy sets (𝐹1
𝑖
, [𝜇
𝐹1
𝑖

, 𝜇
𝐹1
𝑖

]) and (𝐹
2

𝑖
, [𝜇
𝐹2
𝑖

, 𝜇
𝐹2
𝑖

]) with

𝜇
𝐹1
𝑖

(𝑥𝑖) =

{{{{

{{{{

{

exp [−
1

2
(𝑥𝑖 − 𝑥

0

𝑙𝑖
)
2

] , 𝑥𝑖 < 𝑥
0

𝑙𝑖
,

1, 𝑥
0

𝑙𝑖
≤ 𝑥𝑖 ≤ 𝑥

0

𝑟𝑖
,

exp [−
1

2
(𝑥𝑖 − 𝑥

0

𝑟𝑖
)
2

] , 𝑥𝑖 > 𝑥
0

𝑙𝑖
,

(49)

𝜇
𝐹1
𝑖

(𝑥𝑖) =

{{

{{

{

exp [−
1

2
(𝑥𝑖 − 𝑥

0

𝑟𝑖
)
2

] , 𝑥𝑖 ≤ 𝑥
0

𝑙𝑖
,

exp [−
1

2
(𝑥𝑖 − 𝑥

0

𝑙𝑖
)
2

] , 𝑥𝑖 > 𝑥
0

𝑟𝑖
,

(50)

𝜇
𝐹2
𝑖

(𝑥𝑖) =

{{{{

{{{{

{

exp [−
1

2
(𝑥𝑖 − 𝑦

0

𝑙𝑖
)
2

] , 𝑥𝑖 < 𝑦
0

𝑙𝑖
,

1, 𝑦
0

𝑙𝑖
≤ 𝑥𝑖 ≤ 𝑦

0

𝑟𝑖
,

exp [−
1

2
(𝑥𝑖 − 𝑦

0

𝑟𝑖
)
2

] , 𝑥𝑖 > 𝑦
0

𝑙𝑖
,

(51)

𝜇
𝐹𝑘
𝑖

(𝑥𝑖) =

{{

{{

{

exp [−
1

2
(𝑥𝑖 − 𝑦

0

𝑟𝑖
)
2

] , 𝑥𝑖 ≤ 𝑦
0

𝑙𝑖
,

exp [−
1

2
(𝑥𝑖 − 𝑦

0

𝑙𝑖
)
2

] , 𝑥𝑖 > 𝑦
0

𝑟𝑖
.

(52)

If 𝑥0
𝑖
= 𝑦
0

𝑖
, then 𝐹

1

𝑖
= 𝐹
2

𝑖
and 𝜇

𝐹1
𝑖

(𝑥
0

𝑖
) = 𝜇

𝐹2
𝑖

(𝑦
0

𝑖
), 𝜇
𝐹1
𝑖

(𝑥
0

𝑖
) =

𝜇
𝐹2
𝑖

(𝑦
0

𝑖
); that is, only one interval type-2 fuzzy set is defined.

We define two interval value real sets 𝑧1 ∈ [𝑧
1

𝑙
, 𝑧
1

𝑟
] and 𝑧

2
∈

[𝑧
2

𝑙
, 𝑧
2

𝑟
]. Now we have specified all the design parameters

except [𝑧𝑘
𝑙
, 𝑧
𝑘

𝑟
]; that is, we have already obtained a function

𝑓 which is in the form of (20), (21) with 𝑀 = 2 and
(𝐹
𝑘

𝑖
, [𝜇
𝐹𝑘
𝑖

, 𝜇
𝐹𝑘
𝑖

]) given by (8)–(11). With this 𝑓, we have

𝑓 (𝑥
0
) = 𝛼 [𝜙

1

𝑙
(𝑥
0
) 𝑧
1

𝑙
(𝑥
0
) + (1 − 𝜙

1

𝑙
(𝑥
0
)) 𝑧
2

𝑙
(𝑥
0
)]

+ (1 − 𝛼) [𝜙
1

𝑟
(𝑥
0
) 𝑧
1

𝑟
(𝑥
0
) + 𝜙
2

𝑟
(𝑥
0
) 𝑧
2

𝑟
(𝑥
0
)] ,

(53)

where

𝜙
1

𝑙
(𝑥
0
) =

1

1 + ∏
𝑛

𝑖=1
𝜇
𝐹2
𝑖

(𝑥
0

𝑖
)
,

𝜙
1

𝑟
(𝑥
0
) =

∏
𝑛

𝑖=1
𝜇
𝐹1
𝑖

(𝑥
0

𝑖
)

∏
𝑛

𝑖=1
𝜇
𝐹1
𝑖

(𝑥
0

𝑖
) + ∏

𝑛

𝑖=1
𝜇
𝐹2
𝑖

(𝑥
0

𝑖
)
,

𝜙
2

𝑟
(𝑥
0
) =

∏
𝑛

𝑖=1
𝜇
𝐹2
𝑖

(𝑥
0

𝑖
)

∏
𝑛

𝑖=1
𝜇
𝐹1
𝑖

(𝑥
0

𝑖
) + ∏

𝑛

𝑖=1
𝜇
𝐹2
𝑖

(𝑥
0

𝑖
)
,

𝑓 (𝑦
0
) = 𝛼 [𝜙

1

𝑙
(𝑦
0
) 𝑧
1

𝑙
(𝑦
0
) + 𝜙
2

𝑙
(𝑦
0
) 𝑧
2

𝑙
(𝑦
0
)] + (1 − 𝛼)

× [(1 − 𝜙
2

𝑟
(𝑦
0
)) 𝑧
1

𝑟
(𝑦
0
) + 𝜙
2

𝑟
(𝑦
0
) 𝑧
2

𝑟
(𝑦
0
)] ,

(54)

where

𝜙
2

𝑟
(𝑦
0
) =

1

∏
𝑛

𝑖=1
𝜇
𝐹1
𝑖

(𝑦
0

𝑖
) + 1

,
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𝜙
1

𝑙
(𝑦
0
) =

∏
𝑛

𝑖=1
𝜇
𝐹1
𝑖

(𝑦
0

𝑖
)

∏
𝑛

𝑖=1
𝜇
𝐹1
𝑖

(𝑦
0

𝑖
) + ∏

𝑛

𝑖=1
𝜇
𝐹2
𝑖

(𝑦
0

𝑖
)
,

𝜙
2

𝑙
(𝑦
0
) =

∏
𝑛

𝑖=1
𝜇
𝐹2
𝑖

(𝑦
0

𝑖
)

∏
𝑛

𝑖=1
𝜇
𝐹1
𝑖

(𝑦
0

𝑖
) + ∏

𝑛

𝑖=1
𝜇
𝐹2
𝑖

(𝑦
0

𝑖
)
.

(55)

Since x0 ̸= y0, there must be some i such that 𝑥
0

𝑖
= 𝑦
0

𝑖
;

hence, we have ∏
𝑛

𝑖=1
𝜇
𝐹1
𝑖

(𝑥
0

𝑖
) ̸= 1 and ∏

𝑛

𝑖=1
𝜇
𝐹2
𝑖

(𝑥
0

𝑖
) ̸= 1. If we

choose 𝑧
1

𝑙𝑟
= 0 and 𝑧

2

𝑙𝑟
= 1, then 𝑓(𝑥

0
) = 𝛼(1 − 𝜙

1

𝑙
(𝑥
0
)) +

(1 − 𝛼)𝜙
2

𝑟
(𝑥
0
) ̸= 𝛼𝜙

2

𝑙
(𝑦
0
) + (1 − 𝛼)𝜙

2

𝑟
(𝑦
0
) = 𝑓(𝑦

0
). Therefore,

(𝑌, 𝑑∞) separates point on 𝑈.

Lemma 12. For each 𝑥 ∈ 𝑈, there exists 𝑓 ∈ 𝑌 such that
𝑓(𝑥) ̸= 0; that is, 𝑌 vanishes at no point of 𝑈.

Finally, we prove that (𝑌, 𝑑∞) vanishes at no point of 𝑈.
By observing (8)–(11), (20), and (21), we just choose all 𝑧𝑘 > 0

(𝑘 = 1, 2, . . . ,𝑀); that is, any 𝑓 ∈ 𝑌 with 𝑧
𝑘
> 0 serves as

required 𝑓.

Proof of Theorem 2. From (20) and (21), it is evident that 𝑌 is
a set of real continuous functions on𝑈, which are established
by using complete interval type-2 fuzzy sets in the IF parts
of fuzzy rules. Using Lemmas 8, 9, and 10, 𝑌 is proved to be
an algebra. By using the Stone-Weierstrass theorem together
with Lemmas 11 and 12, we establish that the proposed
IT2FNN-2 possesses the universal approximation capability.

Therefore by choosing appropriate class of interval type-2
membership functions, we can conclude that the IT2FNN-0
and IT2FNN-2 with simplified fuzzy if-then rules satisfy the
five criteria of the Stone-Weierstrass theorem.

4. Application Examples

In this section the results from simulations using ANFIS,
IT2FNN-0, IT2FNN-1 [35], IT2FNN-2, and IT2FNN-3 [35]
are presented for nonlinear system identification and fore-
casting the Mackey-Glass chaotic time series [39] with 𝜏 =

60 with different signal noise ratio values, SNR(dB) = 0, 10,
20, 30, free as uncertainty source. These examples are used
as benchmark problems to test the proposed ideas in the
paper. We have to mention that the IT2FNN-1 and IT2FNN-
3 architectures are very similar to I2FNN-0 and IT2FNN-
2, respectively [35], and their results are presented for com-
parison purposes. The proposed IT2FNN architectures are
validated using 10-fold cross-validation [40, 41] considering
sum of square errors (SSE) or rootmean square error (RMSE)
in the training or test phase. We use cross-validation to
measure the variability of the RMSE in the training and
testing phases to compare network architectures IT2FNN.
Cross-validation procedure evaluation is done using Matlab’s
crossvalind function. Noise is added by Matlab’s awgn func-
tion.

In𝐾-fold cross-validation [40], the original sample is ran-
domly partitioned into 𝐾 subsamples. Of the 𝐾 subsamples,

Table 1: RMSE (CHK) values of ANFIS and IT2FNN with 10-fold
cross-validation for identifying non-linearity of Experiment 1.

SNR (dB) ANFIS IT2FNN-0 IT2FNN-1 IT2FNN-2 IT2FNN-3
0 0.6156 0.3532 0.2764 0.2197 0.1535
10 0.2375 0.1153 0.0986 0.0683 0.0453
20 0.0806 0.0435 0.0234 0.0127 0.0087
30 0.0225 0.0106 0.0079 0.0045 0.0028
Free 0.0015 0.0009 0.0004 0.0002 0.0001

100

10−1

10−2

10−3

10−4
CV

-R
M

SE

SNR (dB)
0 10 20 30 40 50 60 70 80
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Figure 7: RMSE (CHK) values of ANFIS and IT2FNN using 10-fold
cross-validation for identifying nonlinearity in Experiment 1.

a single subsample is retained as the validation data for testing
the model, and the remaining 𝐾 − 1 subsamples are used as
training data.The cross-validation process is then repeated𝐾

times (the folds), with each of the 𝐾 subsamples used exactly
once as the validation data. The 𝐾 results from the folds
then can be averaged (or otherwise combined) to produce a
single estimation.The advantage of thismethod over repeated
random subsampling is that all observations are used for
both training and validation, and each observation is used for
validation exactly once. 10-fold cross-validation is commonly
used.Three application examples are used to illustrate proofs
of universality, as follows.

Experiment 1 (identification of a one variable nonlinear
function). In this experiment we approximate a nonlinear
function 𝑓 : R → R:

𝑓 (𝑢) = 0.6 sin (𝜋𝑢) + 0.3 sin (3𝜋𝑢) + 0.1 sin (5𝜋𝑢) + 𝜂,

(56)

(where 𝜂 is a uniform noise component) using a-one input
one-output IT2FNN, 50 training data sets with 10-fold
cross-validation with uniform noise levels, six IT2MFs type
igaussmtype2, 6 rules, and 50 epochs. Once the ANFIS
and IT2FNN models are identified a comparison was made,
taking into account RMSE statistic values with 10-fold cross-
validation. Table 1 and Figure 7 show the resulting RMSE
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Table 2: Resulting RMSE (CHK) values in ANFIS and IT2FNN
for non-linearity identification in Experiment 2 with 10-fold cross-
validation.

SNR (dB) ANFIS IT2FNN-0 IT2FNN-1 IT2FNN-2 IT2FNN-3
0 1.0432 0.7203 0.6523 0.5512 0.5267
10 0.3096 0.2798 0.2583 0.2464 0.2344
20 0.1703 0.1637 0.1592 0.1465 0.1387
30 0.1526 0.1408 0.1368 0.1323 0.1312
Free 0.1503 0.1390 0.1323 0.1304 0.1276

SNR (dB)
0 10 20 30 40 50 60 70 80

ANFIS
IT2FNN-0
IT2FNN-1

IT2FNN-2
IT2FNN-3

100

10−0.2

10−0.4

10−0.6

10−0.8

CV
-R

M
SE

Figure 8: Resulting RMSE (CHK) values obtained by ANFIS and
IT2FNN for nonlinearity identification in Experiment 2with 10-fold
cross-validation.

(CHK) values for ANFIS and IT2FNN; it can be seen that
IT2FNN architectures [31] perform better than ANFIS.

Experiment 2 (identification of a three variable nonlinear
function). A three-input one-output IT2FNN is used to
approximate nonlinear Sugeno [27] function 𝑓 : R3 → R:

𝑓 (𝑥1, 𝑥2, 𝑥3) = (1 + √𝑥1 +
1

𝑥2

+
1

√𝑥
3

3

)

2

+ 𝜂. (57)

216 training data sets are generated with 10-fold cross-
validation and 125 for tests; 2 igaussmtype2 IT2MFs for each
input, 8 rules, and 50 epochs. Once the ANFIS and IT2FNN
models are identified, a comparison is made with RMSE
statistic values and 10-fold cross-validation. Table 2 and
Figure 8 show the resultant RMSE (CHK) values for ANFIS
and IT2FNN. It can be seen that IT2FNN architectures [31]
perform better than ANFIS.

Experiment 3. Predicting the Mackey-Glass chaotic time
series.

SNR (dB)
0 10 20 30 40 50 60 70 80

IT2FNN-0 : TRN
IT2FNN-1 : TRN

IT2FNN-2 : TRN
IT2FNN-3 : TRN

ANFIS : TRN

CV
-R

M
SE

0.35

0.3

0.25
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Mackey Glass chaotic time series 𝜏 = 60

Figure 9: RMSE (TRN) values determined by ANFIS and IT2FNN
models with 10-fold cross-validation for Mackey-Glass chaotic time
series prediction with 𝜏 = 60.

Mackey-Glass chaotic time series is a well-known bench-
mark [39] for systems modeling and is described as follows:

𝑥̇ (𝑡) =
0.1𝑥 (𝑡 − 𝜏)

1 + 𝑥10 (𝑡 − 𝜏)
− 0.1𝑥 (𝑡) . (58)

1200 data sets are generated based on initial conditions𝑥(0) =
1.2 and 𝜏 = 60, using fourth order Runge-Kutta method
adding different levels of uniform noise. For comparing with
other methods, an input-output vector is chosen for IT2FNN
model with the following format:

[𝑥 (𝑡 − 18) , 𝑥 (𝑡 − 12) , 𝑥 (𝑡 − 6) , 𝑥 (𝑡) ; 𝑥 (𝑡 + 6)] . (59)

Four-input and one-output IT2FNN model is used for
Mackey-Glass chaotic time series prediction, choosing 500
data sets for training and 500 test data data sets with 10-
fold cross-validation test, 2 IT2MFs for each input with
membership function igaussmtype2, 16 rules, and 50 epochs.
ANFIS and IT2FNNmodels are identified, comparing RMSE
statistical values with 10-fold cross-validation. Table 3 and
Figures 9 and 10 show the number of 𝜍 points out of
uncertainty interval 𝑌̃(𝑥) ∈ [𝑦𝑙(𝑥), 𝑦𝑟(𝑥)] evaluated by
IT2FNNmodel, RMSE training values (TRN) and test (CHK)
obtained for ANFIS and IT2FNN models. It can be seen that
IT2FNN model architectures predict better Mackey-Glass
chaotic time series.

5. Conclusions

In this paper we have shown that an interval type-2 fuzzy
neural network (IT2FNN) is a universal approximator. Sim-
ulation results of nonlinear function identification using
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Table 3: RMSE (TRN/CHK) and 𝜍 values determined by ANFIS and IT2FNNmodels with 10 fold cross-validation for Mackey-Glass chaotic
time series prediction with 𝜏 = 60.

SNR (dB)
𝜏 = 60

ANFIS IT2FNN-0 IT2FNN-1 IT2FNN-2 IT2FNN-3
TRN CHK 𝜍 TRN CHK 𝜍 TRN CHK 𝜍 TRN CHK 𝜍 TRN CHK 𝜍

0 0.3403 0.3714 NA 0.2388 0.2687 37 0.2027 0.2135 35 0.1495 0.1536 34 0.1244 0.1444 31
10 0.1544 0.1714 NA 0.1312 0.1456 33 0.1069 0.1119 30 0.0805 0.0972 28 0.0532 0.0629 25
20 0.0929 0.1007 NA 0.0708 0.0781 28 0.0566 0.0594 26 0.0424 0.0485 24 0.0342 0.0355 21
30 0.0788 0.0847 NA 0.0526 0.0582 19 0.0411 0.0468 18 0.0309 0.0332 16 0.0227 0.0316 14
Free 0.0749 0.0799 NA 0.0414 0.0477 10 0.0321 0.0353 9 0.0251 0.0319 6 0.0215 0.0293 4

SNR (dB)
0 10 20 30 40 50 60 70 80

IT2FNN-0 : CHK
IT2FNN-1 : CHK

IT2FNN-2 : CHK
IT2FNN-3 : CHK
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Figure 10: RMSE (CHK) values determined by ANFIS and IT2FNN
models with 10-fold cross-validation for Mackey-Glass chaotic time
series prediction with 𝜏 = 60.

the IT2FNN for one and three variables and for the Mackey-
Glass chaotic time series prediction have been presented
to illustrate the theoretical result. In these experiments, the
estimated RMSE values for nonlinear function identification
with 10-fold cross-validation for the hybrid architectures
(IT2FNN-2:A2C0 and IT2FNN-2:A2C1) illustrate the proof
based on Stone-Weierstrass theorem, that they are universal
approximators for efficient identification of nonlinear func-
tions, complying with |𝑔(𝑥) − 𝑓(𝑥)| < 𝜀. Also, it can be
seen that while increasing the Signal Noise Ratio (SNR),
IT2FNN architectures handle uncertainty more efficiently.
We have also illustrated the ideas presented in the paper with
the benchmark problem of Mackey-Glass chaotic time series
prediction.
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of muscle movements using a wavelet based fuzzy clustering
neural network,” Expert Systems, vol. 26, no. 1, pp. 49–59, 2009.

[22] S. M. Zhou, H. X. Li, and L. D. Xu, “A variational approach
to intensity approximation for remote sensing images using
dynamic neural networks,” Expert Systems, vol. 20, no. 4, pp.
163–170, 2003.

[23] S. Panahian Fard and Z. Zainuddin, “Interval type-2 fuzzy
neural networks version of the Stone-Weierstrass theorem,”
Neurocomputing, vol. 74, no. 14-15, pp. 2336–2343, 2011.

[24] K. Hornik, M. Stinchcombe, and H.White, “Multilayer feedfor-
ward networks are universal approximators,” Neural Networks,
vol. 2, no. 5, pp. 359–366, 1989.

[25] L.-X. Wang and J. M. Mendel, “Generating fuzzy rules by
learning from examples,” IEEE Transactions on Systems, Man
and Cybernetics, vol. 22, no. 6, pp. 1414–1427, 1992.

[26] J. J. Buckley, “Sugeno type controllers are universal controllers,”
Fuzzy Sets and Systems, vol. 53, no. 3, pp. 299–303, 1993.

[27] T. Takagi and M. Sugeno, “Fuzzy identification of systems and
its applications to modeling and control,” IEEE Transactions on
Systems, Man and Cybernetics, vol. 15, no. 1, pp. 116–132, 1985.

[28] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, no. 3,
pp. 338–353, 1965.

[29] K. Hirota andW. Pedrycz, “OR/ANDneuron inmodeling fuzzy
set connectives,” IEEE Transactions on Fuzzy Systems, vol. 2, no.
2, pp. 151–161, 1994.

[30] J.-S. R. Jang, C. T. Sun, and E. Mizutani, Neuro-Fuzzy and Soft
Computing, Prentice-Hall, New York, NY, USA, 1997.

[31] J. R. Castro, O. Castillo, P. Melin, and A. Rodriguez-Diaz,
“A hybrid learning algorithm for interval type-2 fuzzy neural
networks: the case of time series prediction,” in Soft Computing
For Hybrid Intelligent Systems, vol. 154, pp. 363–386, Springer,
Berlin, Germany, 2008.

[32] J. R. Castro, O. Castillo, P. Melin, and A. Rodriguez-Diaz,
“Hybrid learning algorithm for interval type-2 fuzzy neural
networks,” in Proceedings of Granular Computing, pp. 157–162,
Silicon Valley, Calif, USA, 2007.

[33] F. Lin and P. Chou, “Adaptive control of two-axis motion
control system using interval type-2 fuzzy neural network,”
IEEE Transactions on Industrial Electronics, vol. 56, no. 1, pp.
178–193, 2009.
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