7 research outputs found

    Experimentation with MANETs of Smartphones

    Full text link
    Mobile AdHoc NETworks (MANETs) have been identified as a key emerging technology for scenarios in which IEEE 802.11 or cellular communications are either infeasible, inefficient, or cost-ineffective. Smartphones are the most adequate network nodes in many of these scenarios, but it is not straightforward to build a network with them. We extensively survey existing possibilities to build applications on top of ad-hoc smartphone networks for experimentation purposes, and introduce a taxonomy to classify them. We present AdHocDroid, an Android package that creates an IP-level MANET of (rooted) Android smartphones, and make it publicly available to the community. AdHocDroid supports standard TCP/IP applications, providing real smartphone IEEE 802.11 MANET and the capability to easily change the routing protocol. We tested our framework on several smartphones and a laptop. We validate the MANET running off-the-shelf applications, and reporting on experimental performance evaluation, including network metrics and battery discharge rate.Comment: 6 pages, 7 figures, 1 tabl

    Towards an Info-Symbiotic Decision Support System for Disaster Risk Management

    Get PDF
    This paper outlines a framework for an info-symbiotic modelling system using cyber-physical sensors to assist in decision-making. Using a dynamic data-driven simulation approach, this system can help with the identification of target areas and resource allocation in emergency situations. Using different natural disasters as exemplars, we will show how cyber-physical sensors can enhance ground level intelligence and aid in the creation of dynamic models to capture the state of human casualties. Using a virtual command & control centre communicating with sensors in the field, up-to-date information of the ground realities can be incorporated in a dynamic feedback loop. Using other information (e.g. Weather models) a complex and rich model can be created. The framework adaptively manages the heterogeneous collection of data resources and uses agent-based models to create what-if scenarios in order to determine the best course of action

    A Proximity-Based Framework for Mobile Services

    Full text link

    On-the-Fly Establishment of Multi-hop D2D Communication based on Android Smartphones and Embedded Platforms: Implementation and Real-Life Experiments

    Get PDF
    Masteroppgave informasjons- og kommunikasjonsteknologi - Universitetet i Agder, 2015(Konfidensiell til/confidential until 01.07.2020

    Serval mesh software-WiFi multi model management

    No full text

    Design and Evaluation of Compression, Classification and Localization Schemes for Various IoT Applications

    Get PDF
    Nowadays we are surrounded by a huge number of objects able to communicate, read information such as temperature, light or humidity, and infer new information through ex- changing data. These kinds of objects are not limited to high-tech devices, such as desktop PC, laptop, new generation mobile phone, i.e. smart phone, and others with high capabilities, but also include commonly used object, such as ID cards, driver license, clocks, etc. that can made smart by allowing them to communicate. Thus, the analog world of just a few years ago is becoming the a digital world of the Inter- net of Things (IoT), where the information from a single object can be retrieved from the Internet. The IoT paradigm opens several architectural challenges, including self-organization, self-managing, self-deployment of the smart objects, as well as the problem of how to minimize the usage of the limited resources of each device. The concept of IoT covers a lot of communication paradigms such as WiFi, Radio Frequency Identification (RFID), and Wireless Sensor Network (WSN). Each paradigm can be thought of as an IoT island where each device can communicate directly with other devices. The thesis is divided in sections in order to cover each problem mentioned above. The first step is to understand the possibility to infer new knowledge from the deployed device in a scenario. For this reason, the research is focused on the web semantic, web 3.0, to assign a semantic meaning to each thing inside the architecture. The sole semantic concept is unusable to infer new information from the data gathered; in fact, it is necessary to organize the data through a hierarchical form defined by an Ontology. Through the exploitation of the Ontology, it is possible to apply semantic engine reasoners to infer new knowledge about the network. The second step of the dissertation deals with the minimization of the usage of every node in a WSN. The main purpose of each node is to collect environmental data and to exchange hem with other nodes. To minimize battery consumption, it is necessary to limit the radio usage. Therefore, we implemented Razor, a new lightweight algorithm which is expected to improve data compression and classification by leveraging on the advantages offered by data mining methods for optimizing communications and by enhancing information transmission to simplify data classification. Data compression is performed studying the well-know Vector Quantization (VQ) theory in order to create the codebooks necessary for signal compression. At the same time, it is requested to give a semantic meaning to un- known signals. In this way, the codebook feature is able not only to compress the signals, but also to classify unknown signals. Razor is compared with both state-of-the-art compression and signal classification techniques for WSN . The third part of the thesis covers the concept of smart object applied to Robotic research. A critical issue is how a robot can localize and retrieve smart objects in a real scenario without any prior knowledge. In order to achieve the objectives, it is possible to exploit the smart object concept and localize them through RSSI measurements. After the localization phase, the robot can exploit its own camera to retrieve the objects. Several filtering algorithms are developed in order to mitigate the multi–path issue due to the wireless communication channel and to achieve a better distance estimation through the RSSI measurement. The last part of the dissertation deals with the design and the development of a Cognitive Network (CN) testbed using off the shelf devices. The device type is chosen considering the cost, usability, configurability, mobility and possibility to modify the Operating System (OS) source code. Thus, the best choice is to select some devices based on Linux kernel as Android OS. The feature to modify the Operating System is required to extract the TCP/IP protocol stack parameters for the CN paradigm. It is necessary to monitor the network status in real-time and to modify the critical parameters in order to improve some performance, such as bandwidth consumption, number of hops to exchange the data, and throughput

    Applying named data networking in mobile ad hoc networks

    Get PDF
    This thesis presents the Name-based Mobile Ad-hoc Network (nMANET) approach to content distribution that ensure and enables responsible research on applying named data networking protocol in mobile ad-hoc networks. The test framework of the nMANET approach allows reproducibility of experiments and validation of expected results based on analysis of experimental data. The area of application for nMANETs is the distribution of humanitarian information in emergency scenarios. Named-Data Networking (NDN) and ad-hoc mobile communication allow exchange of emergency information in situations where central services such as cellular towers and electric systems are disrupted. The implemented prototype enables researchers to reproduce experiments on content distribution that consider constraints on mobile resources, such as the remaining power of mobile devices and available network bandwidth. The nMANET framework validates a set of experiments by measuring network traffic and energy consumption from both real mobile devices and those in a simulated environment. Additionally, this thesis presents results from experiments in which the nMANET forwarding strategies and traditional wireless services, such as hotpost, are analysed and compared. This experimental data represents the evidence that supports and validates the methodology presented in this thesis. The design and implementation of an nMANET prototype, the Java NDN Forwarder Daemon (JNFD) is presented as a testing framework, which follows the principles of continuous integration, continuous testing and continuous deployment. This testing framework is used to validate JNFD and IP-based technologies, such as HTTP in a MANET using the OLSR routing protocol, as well as traditional wireless infrastructure mode wireless. The set of experiments executed, in a small network of Android smart-phones connected in ad-hoc mode and in a virtual ad-hoc network simulator show the advantages of reproducibility using nMANET features. JNFD is open source, all experiments are scripted, they are repeatable and scalable. Additionally, JNFD utilises real GPS traces to simulate mobility of nodes during experiments. This thesis provides experimental evidence to show that nMANET allows reproducibility and validation of a wide range of future experiments applying NDN on MANETs
    corecore