502 research outputs found

    A novel power state evaluation method for the lithium battery packs based on the improved external measurable parameter coupling model.

    Get PDF
    The power state evaluation plays a decisive influence on the safety implication of the lithium battery packs, and there is no effective online evaluation method so far due to the imbalance phenomenon among the internal connected battery cells, which cannot be abstained by the advancement of the materials and techniques. A novel power state mathematical evaluation method is proposed in this paper by investigating the improved external parameter coupling treatment, in which the mutual relationship description is conducted by the parameter information feature decomposition together with the Bayesian sequential decision algorithm. The complicated power state evaluation model with the coupling relationship decomposition is constructed by investigating the non-convex optimization treatment under complex working conditions for the lithium battery packs. The evidence combination is realized by introducing the information fusion strategy, according to which the multi criteria decision is realized by using the evidence theory. As can be seen from the experimental results, the voltage difference is within 10 mV in both of the first and the second phases, which increases rapidly in the third phase and reaches a maximum of 120 mV. Meanwhile, its power state evaluation accuracy is 95.00% and has a good output voltage tracking effect in the complex working conditions. The power state evaluation can be realized effectively by the proposed model constructing method, which is suitable for the complex battery cell combination structures and environmental influences, protecting the reliable and hierarchical working state monitoring and management of the lithium battery packs. It provides safety protection and energy management basis for the reliable power supply in the cleaner production of the power lithium battery packs

    A comprehensive working state monitoring method for power battery packs considering state of balance and aging correction.

    Get PDF
    A comprehensive working state monitoring method is proposed to protect the power lithium-ion battery packs, implying accurate estimation effect but using minimal time demand of self-learning treatment. A novel state of charge estimation model is conducted by using the improved unscented Kalman filtering method, in which the state of balance and aging process correction is considered, guaranteeing the powered battery supply reliability effectively. In order to realize the equilibrium state evaluation among the internal battery cells, the numerical description and evaluation is putting forward, in which the improved variation coefficient is introduced into the iterative calculation process. The intermittent measurement and real-time calibration calculation process is applied to characterize the capacity change of the battery pack towards the cycling maintenance number, according to which the aging process impact correction can be investigated. This approach is different to the traditional methods by considering the multi-input parameters with real-time correction, in which every calculation step is investigated to realize the working state estimation by using the synthesis algorithm. The state of charge estimation error is 1.83%, providing the technical support for the reliable power supply application of the lithium-ion battery packs

    Stage of Charge Estimation of Lithium-ion Battery Packs Based on Improved Cubature Kalman Filter with Long Short-Term Memory Model

    Get PDF
    Accurate estimation of state of charge (SOC) of lithium-ion battery packs remains challenging due to inconsistencies among battery cells. To achieve precise SOC estimation of battery packs, firstly, a long short-term memory (LSTM) recurrent neural network (RNN)-based model is constructed to characterize the battery electrical performance, and a rolling learning method is proposed to update the model parameters for improving the model accuracy. Then, an improved square root-cubature Kalman filter (SRCKF) is designed together with the multi-innovation technique to estimate battery cellā€™s SOC. Next, to cope with inconsistencies among battery cells, the SOC estimation value from the maximum and minimum cells are combined with a smoothing method to estimate the pack SOC. The robustness and accuracy of the proposed battery model and cell SOC estimation method are verified by exerting the experimental validation under time-varying temperature conditions. Finally, real operation data are collected from an electric-scooter (ES) monitoring platform to further validate the generalization of the designed pack SOC estimation algorithm. The experimental results manifest that the SOC estimation error can be limited within 2% after convergence

    A novel endurance prediction method of series connected lithium-ion batteries based on the voltage change rate and iterative calculation.

    Get PDF
    High-power lithium-ion battery packs are widely used in large and medium-sized unmanned aerial vehicles and other fields, but there is a safety hazard problem with the application that needs to be solved. The generation mechanism and prevention measurement research is carried out on the battery management system for the unmanned aerial vehicles and the lithium-ion battery state monitoring. According to the group equivalent modeling demand of the battery packs, a new idea of compound equivalent circuit modeling is proposed and the model constructed to realize the accurate description of the working characteristics. In order to realize the high-precision state prediction, the improved unscented Kalman feedback correction mechanism is introduced, in which the simplified particle transforming is introduced and the voltage change rate is calculated to construct a new endurance prediction model. Considering the influence of the consistency difference between battery cells, a novel equilibrium state evaluation idea is applied, the calculation results of which are embedded in the equivalent modeling and iterative calculation to improve the prediction accuracy. The model parameters are identified by the Hybrid Pulse Power Characteristic test, in which the conclusion is that the mean value of the ohm internal resistance is 20.68mĪ©. The average internal resistance is 1.36mĪ©, and the mean capacitance value is 47747.9F. The state of charge prediction error is less than 2%, which provides a feasible way for the equivalent modeling, battery management system design and practical application of pack working lithium-ion batteries

    Multi-Level Data-Driven Battery Management: From Internal Sensing to Big Data Utilization

    Get PDF
    Battery management system (BMS) is essential for the safety and longevity of lithium-ion battery (LIB) utilization. With the rapid development of new sensing techniques, artificial intelligence and the availability of huge amounts of battery operational data, data-driven battery management has attracted ever-widening attention as a promising solution. This review article overviews the recent progress and future trend of data-driven battery management from a multi-level perspective. The widely-explored data-driven methods relying on routine measurements of current, voltage, and surface temperature are reviewed first. Within a deeper understanding and at the microscopic level, emerging management strategies with multi-dimensional battery data assisted by new sensing techniques have been reviewed. Enabled by the fast growth of big data technologies and platforms, the efficient use of battery big data for enhanced battery management is further overviewed. This belongs to the upper and the macroscopic level of the data-driven BMS framework. With this endeavor, we aim to motivate new insights into the future development of next-generation data-driven battery management

    Multiphysics simulation optimization framework for lithium-ion battery pack design for electric vehicle applications

    Get PDF
    Large-scale commercialization of electric vehicles (EVs) seeks to develop battery systems with higher energy efficiency and improved thermal performance. Integrating simulation-based design optimization in battery development process expands the possibilities for novel design exploration. This study presents a dual-stage multiphysics simulation optimization methodology for comprehensive concept design of Lithium-ion (Li-ion) battery packs for EV applications. At the first stage, multi-objective optimization of electrochemical thermally coupled cells is performed using genetic algorithm considering the specific energy and the maximum temperature of the cells as design objectives. At the second stage, the energy efficiency and the thermal performances of each optimally designed cell are evaluated under pack operation to account for cell-to-pack interactions under realistic working scenarios. When operating at 1.5 C discharge current, the battery pack comprising optimally designed cells for which the specific energy and the maximum temperature are equally weighted delivers the highest specific energy with enhanced thermal performance. The most favorable pack design shows 8% reduction in maximum pack temperature and 16.1% reduction in module-to-module temperature variations compared to commercially available pack. The methodology for design optimization presented in this work is generic, providing valuable knowledge for future cell and pack designs that employ different chemistries and configurations

    Recent Advances in Model-Based Fault Diagnosis for Lithium-Ion Batteries: A Comprehensive Review

    Full text link
    Lithium-ion batteries (LIBs) have found wide applications in a variety of fields such as electrified transportation, stationary storage and portable electronics devices. A battery management system (BMS) is critical to ensure the reliability, efficiency and longevity of LIBs. Recent research has witnessed the emergence of model-based fault diagnosis methods in advanced BMSs. This paper provides a comprehensive review on the model-based fault diagnosis methods for LIBs. First, the widely explored battery models in the existing literature are classified into physics-based electrochemical models and electrical equivalent circuit models. Second, a general state-space representation that describes electrical dynamics of a faulty battery is presented. The formulation of the state vectors and the identification of the parameter matrices are then elaborated. Third, the fault mechanisms of both battery faults (incl. overcharege/overdischarge faults, connection faults, short circuit faults) and sensor faults (incl. voltage sensor faults and current sensor faults) are discussed. Furthermore, different types of modeling uncertainties, such as modeling errors and measurement noises, aging effects, measurement outliers, are elaborated. An emphasis is then placed on the observer design (incl. online state observers and offline state observers). The algorithm implementation of typical state observers for battery fault diagnosis is also put forward. Finally, discussion and outlook are offered to envision some possible future research directions.Comment: Submitted to Renewable and Sustainable Energy Reviews on 09-Jan-202

    The effect of cell-to-cell variations and thermal gradients on the performance and degradation of lithium-ion battery packs

    Get PDF
    The performance of lithium-ion battery packs are often extrapolated from single cell performance however uneven currents in parallel strings due to cell-to-cell variations, thermal gradients and/or cell interconnects can reduce the overall performance of a large scale lithium-ion battery pack. In this work, we investigate the performance implications caused by these factors by simulating six parallel connected batteries based on a thermally coupled single particle model with the solid electrolyte interphase growth degradation mechanism modelled. Experimentally validated simulations show that cells closest to the load points of a pack experience higher currents than cells further away due to uneven overpotentials caused by the interconnects. When a cell with a four times greater internal impedance was placed in the location with the higher currents this actually helped to equalise the cell-to-cell current distribution, however if this was placed at a location furthest from the load point this would cause a ~6% reduction in accessible energy at 1.5 C. The influence of thermal gradients can further affect this current heterogeneity leading to accelerated aging. Simulations show that in all cases, cells degrade at different rates in a pack due to the uneven currents, with this being amplified by thermal gradients. In the presented work a 5.2% increase in degradation rate, from -7.71 mWh/cycle (isothermal) to - 8.11 mWh/cycle (non-isothermal) can be observed. Therefore, the insights from this paper highlight the highly coupled nature of battery pack performance and can inform designs for higher performance and longer lasting battery packs
    • ā€¦
    corecore