124 research outputs found

    Sequentiality vs. Concurrency in Games and Logic

    Full text link
    Connections between the sequentiality/concurrency distinction and the semantics of proofs are investigated, with particular reference to games and Linear Logic.Comment: 35 pages, appeared in Mathematical Structures in Computer Scienc

    Sequential algorithms and strongly stable functions

    Get PDF
    International audienceIntuitionistic proofs (or PCF programs) may be interpreted as functions between domains, or as strategies on games. The two kinds of interpretation are inherently different: static vs. dynamic, extensional vs. intentional. It is extremely instructive to compare and to connect them. In this article, we investigate the extensional content of the sequential algorithm hierarchy [-] introduced by Berry and Curien two decades ago. We equip every sequential game [T] of the hierarchy with a realizability relation between plays and extensions. In this way, the sequential game [T] becomes a directed acyclic graph, instead of a tree. This enables to define a hypergraph [[T]] on the extensions (or terminal leaves) of the game [T]. We establish that the resulting hierarchy [[T]] coincides with the strongly stable hierarchy introduced by Bucciarelli and Ehrhard. We deduce from this a game-theoretic proof of Ehrhard's collapse theorem, which states that the strongly stable hierarchy coincides with the extensional collapse of the sequential algorithm hierarchy

    Focusing in Asynchronous Games

    Get PDF
    Game semantics provides an interactive point of view on proofs, which enables one to describe precisely their dynamical behavior during cut elimination, by considering formulas as games on which proofs induce strategies. We are specifically interested here in relating two such semantics of linear logic, of very different flavor, which both take in account concurrent features of the proofs: asynchronous games and concurrent games. Interestingly, we show that associating a concurrent strategy to an asynchronous strategy can be seen as a semantical counterpart of the focusing property of linear logic

    Asynchronous games 2: the true concurrency of innocence

    Get PDF
    In game semantics, the higher-order value passing mechanisms of the lambda-calculus are decomposed as sequences of atomic actions exchanged by a Player and its Opponent. Seen from this angle, game semantics is reminiscent of trace semantics in concurrency theory, where a process is identified to the sequences of requests it generates in the course of time. Asynchronous game semantics is an attempt to bridge the gap between the two subjects, and to see mainstream game semantics as a refined and interactive form of trace semantics. Asynchronous games are positional games played on Mazurkiewicz traces, which reformulate (and generalize) the familiar notion of arena game. The interleaving semantics of lambda-terms, expressed as innocent strategies, may be analyzed in this framework, in the perspective of true concurrency. The analysis reveals that innocent strategies are positional strategies regulated by forward and backward confluence properties. This captures, we believe, the essence of innocence. We conclude the article by defining a non uniform variant of the lambda-calculus, in which the game semantics of a lambda-term is formulated directly as a trace semantics, performing the syntactic exploration or parsing of that lambda-term

    Asynchronous games 4 : A fully complete model of propositional linear logic

    Get PDF
    International audienceWe construct a denotational model of propositional linear logic based on asynchronous games and winning uniform innocent strategies. Every formula A is interpreted as an asynchronous game [A] and every proof pi of A is interpreted as a winning uniform innocent strategy pi of the game A. We show that the resulting model is fully complete: every winning uniform innocent strategy sigma of the asynchronous game A is the denotation pi of a proof pi of the formula A

    Fundamentals of object-oriented languages, systems, and methods : Seminar 9434, August 22-26, 1994

    Get PDF

    Fundamentals of object-oriented languages, systems, and methods : Seminar 9434, August 22-26, 1994

    Get PDF

    Nominal Models of Linear Logic

    Get PDF
    PhD thesisMore than 30 years after the discovery of linear logic, a simple fully-complete model has still not been established. As of today, models of logics with type variables rely on di-natural transformations, with the intuition that a proof should behave uniformly at variable types. Consequently, the interpretations of the proofs are not concrete. The main goal of this thesis was to shift from a 2-categorical setting to a first-order category. We model each literal by a pool of resources of a certain type, that we encode thanks to sorted names. Based on this, we revisit a range of categorical constructions, leading to nominal relational models of linear logic. As these fail to prove fully-complete, we revisit the fully-complete game-model of linear logic established by Melliès. We give a nominal account of concurrent game semantics, with an emphasis on names as resources. Based on them, we present fully complete models of multiplicative additive tensorial, and then linear logics. This model extends the previous result by adding atomic variables, although names do not play a crucial role in this result. On the other hand, it provides a nominal structure that allows for a nominal relationship between the Böhm trees of the linear lambda-terms and the plays of the strategies. However, this full-completeness result for linear logic rests on a quotient. Therefore, in the final chapter, we revisit the concurrent operators model which was first developed by Abramsky and Melliès. In our new model, the axiomatic structure is encoded through nominal techniques and strengthened in such a way that full completeness still holds for MLL. Our model does not depend on any 2-categorical argument or quotient. Furthermore, we show that once enriched with a hypercoherent structure, we get a static fully complete model of MALL

    Resource modalities in game semantics

    Get PDF
    The description of resources in game semantics has never achieved the simplicity and precision of linear logic, because of a misleading conception: the belief that linear logic is more primitive than game semantics. We advocate instead the contrary: that game semantics is conceptually more primitive than linear logic. Starting from this revised point of view, we design a categorical model of resources in game semantics, and construct an arena game model where the usual notion of bracketing is extended to multi- bracketing in order to capture various resource policies: linear, affine and exponential
    corecore